Question : If $\frac{1}{p}+\frac{1}{q}=\frac{1}{p+q}$, the value of $\left (p^{3}-q^{3}\right )$ is:
Option 1: $p - q$
Option 2: $pq$
Option 3: $1$
Option 4: $0$
New: SSC CGL 2025 Tier-1 Result
Latest: SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $0$
Solution : Given: $\frac{1}{p}+\frac{1}{q}=\frac{1}{p+q}$ ⇒ $\frac{q+p}{pq}=\frac{1}{p+q}$ ⇒ $(p+q)^2=pq$ ⇒ $p^2+q^2+2pq=pq$ ⇒ $p^2+q^2+pq=0$ ----------------------------(i) Now, $\left (p^{3}-q^{3}\right )=(p-q)(p^2+q^2+pq)$ Putting the value of $p^2+q^2+pq=0$ from the equation (i) So, $\left (p^{3}-q^{3}\right)=(p-q)(0)$ ⇒ $\left (p^{3}-q^{3}\right)=0$ Hence, the correct answer is $0$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Successive discounts of $p$% and $q$% on a catalogue price of an article is equivalent to a single discount of:
Option 1: $\left(p -q + \frac{pq}{100} \right )$%
Option 2: $\left(p - q - \frac{pq}{100} \right )$%
Option 3: $\left(p + q - \frac{pq}{100} \right )$%
Option 4: $\left(p + q + \frac{pq}{100} \right )$%
Question : If $\tan ^2 \alpha=3+Q^2$, then $\sec \alpha+\tan ^3 \alpha \operatorname{cosec} \alpha=?$
Option 1: $\left(3+Q^2\right)^{\frac{3}{2}}$
Option 2: $\left(7+Q^2\right)^{\frac{3}{2}}$
Option 3: $\left(5-Q^2\right)^{\frac{3}{2}}$
Option 4: $\left(4+Q^2\right)^{\frac{3}{2}}$
Question : If $M =\left ( \frac{3}{7} \right ) ÷ \left ( \frac{6}{5} \right ) ×\left ( \frac{2}{3} \right ) + \left ( \frac{1}{5} \right ) ×\left ( \frac{3}{2} \right )$ and $N = \left ( \frac{2}{5} \right ) × \left ( \frac{5}{6} \right ) ÷ \left ( \frac{1}{3} \right ) + \left ( \frac{3}{5} \right ) × \left ( \frac{2}{3} \right ) ÷ \left ( \frac{3}{5} \right )$, then what is the value of $\frac{M}{N}$?
Option 1: $\frac{207}{560}$
Option 2: $\frac{339}{1120}$
Option 3: $\frac{113}{350}$
Option 4: $\frac{69}{175}$
Question : If $x_{1}x_{2}x_{3}=4(4+x_{1}+x_{2}+x_{3})$, then what is the value of $\left [ \frac{1}{(2+x_{1})} \right ]+\left [ \frac{1}{(2+x_{2})} \right ]+\left [ \frac{1}{(2+x_{3})} \right ]?$
Option 1: $1$
Option 2: $\frac{1}{2}$
Option 3: $2$
Option 4: $\frac{1}{3}$
Question : If $\left (4x+\frac{1}{x} \right)=5,x\neq 0,$ then the value of $\frac{5x}{4x^{2}+10x+1}$ is:
Option 1: $\frac{1}{2}$
Option 2: $\frac{1}{3}$
Option 3: $\frac{2}{3}$
Option 4: $3$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile