Question : If the value of $\operatorname{cosec} A + \cot A = m$, then the value of $\operatorname{cosec} A - \cot A$ is:
Option 1: $\frac{1}m$
Option 2: $m$
Option 3: $\sqrt{m}$
Option 4: $m^2$
Correct Answer: $\frac{1}m$
Solution : Given: $\operatorname{cosec} A + \cot A = m$ We Know that, $\operatorname{cosec}^2 A - \cot^2 A = 1$ $⇒(\operatorname{cosec} A - \cot A)(\operatorname{cosec}A + \cot A) = 1$ Substituting $m$ for $\operatorname{cosec} A + \cot A$, we get: $\therefore\operatorname{cosec} A - \cot A = \frac{1}{m}$ Hence, the correct answer is $\frac{1}{m}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\sin A=\frac{\sqrt{3}}{2}, 0<A<90^{\circ}$, then find the value of $2(\operatorname{cosec} A + \cot A)$.
Option 1: $2 \sqrt{3}$
Option 2: $\sqrt{3}$
Option 3: $\frac{2}{\sqrt{3}}$
Option 4: $\frac{1}{\sqrt{3}}$
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Option 1: $\frac{4+\sqrt{2}}{2}$
Option 2: $\frac{2+\sqrt{3}}{2}$
Option 3: $\frac{4+\sqrt{3}}{2}$
Option 4: $\frac{2+\sqrt{2}}{2}$
Question : The value of $\frac{\sin A}{\cot A+\operatorname{cosec} A}-\frac{\sin A}{\cot A-\operatorname{cosec} A}+1$ is:
Option 1: $\frac{1}{2}$
Option 2: $3$
Option 3: $0$
Option 4: $2$
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Option 1: $\sec A-\tan A$
Option 2: $\operatorname{cosec} A+\cot A$
Option 3: $\sec A+\tan A$
Option 4: $\operatorname{cosec} A-\cot A$
Question : If $(\operatorname{cosec} \theta-\cot \theta) = \frac{7}{2}$, the value of $\operatorname{cosec} \theta$ is:
Option 1: $\frac{47}{28}$
Option 2: $\frac{51}{28}$
Option 3: $\frac{53}{28}$
Option 4: $\frac{49}{28}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile