Question : If $\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}$, then:
Option 1: $ab=cd$
Option 2: $ad=bc$
Option 3: $ac=bd$
Option 4: $a=b=c\neq d$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $ad=bc$
Solution : Given: $\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}$ Simplifying by cross multiplication, $⇒9ac-12ad+12bc-16bd=9ac-12bc+12ad-16bd$ $⇒24bc=24ad$ $⇒ad=bc$ Hence, the correct answer is $ad=bc$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : ABCD is a quadrilateral in which BD and AC are diagonals. Then, which of the following is true:
Option 1: AB + BC + CD + DA < (AC + BD)
Option 2: AB + BC + CD + DA > (AC + BD)
Option 3: AB + BC + CD + DA = (AC + BD)
Option 4: AB + BC + CD + DA > 2(AC + BD)
Question : If ABC is an equilateral triangle and D is a point in BC such that AD is perpendicular to BC, then:
Option 1: AB : BD = 1 : 1
Option 2: AB : BD = 1 : 2
Option 3: AB : BD = 2 : 1
Option 4: AB : BD = 3 : 2
Question : If $\frac{a^{2} - bc}{a^{2}+bc}+\frac{b^{2}-ca}{b^{2}+ca}+\frac{c^{2}-ab}{c^{2}+ab}=1$, then the value of $\frac{a^{2}}{a^{2}+bc}+\frac{b^{2}}{b^{2}+ac}+\frac{c^{2}}{c^{2}+ab}$ is:
Option 1: 0
Option 2: 1
Option 3: –1
Option 4: 2
Question : ABC is a right angle triangle and $\angle ABC = 90^{\circ}$. BD is perpendicular on the side AC. What is the value of $(BD)^2$?
Option 1: $AD\times DC$
Option 2: $BC\times AB$
Option 3: $BC\times CD$
Option 4: $AD\times AC$
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Option 1: –1
Option 2: abc
Option 3: 0
Option 4: 1
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile