Question : If $\sin t+\cos t=\frac{4}{5}$, then find $\sin t.\cos t$.
Option 1: $\frac{9}{50}$
Option 2: $-\frac{9}{50}$
Option 3: $\frac{9}{25}$
Option 4: $-\frac{9}{25}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $-\frac{9}{50}$
Solution : Given: $\sin t+\cos t=\frac{4}{5}$ Squaring both sides, we have, ⇒ $(\sin t+\cos t)^{2}=(\frac{4}{5})^{2}$ ⇒ $\sin^{2} t+\cos^{2} t+2\sin t.\cos t=\frac{16}{25}$ We know that $\sin^{2} t+\cos^{2}=1$ ⇒ $1+2\sin t.\cos t=\frac{16}{25}$ ⇒ $2\sin t.\cos t=\frac{16}{25}–1$ ⇒ $2\sin t.\cos t=-\frac{9}{25}$ ⇒ $\sin t.\cos t=-\frac{9}{50}$ Hence, the correct answer is $-\frac{9}{50}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{21\cos A+3\sin A}{3\cos A+4\sin A}=2$, then find the value of cot A.
Option 1: $\frac{9}{11}$
Option 2: $\frac{11}{9}$
Option 3: $\frac{1}{3}$
Option 4: $\frac{11}{10}$
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Option 1: $ \frac{5}{\sqrt{34}} $
Option 2: $ \frac{5}{\sqrt{24}} $
Option 3: $ \frac{\sqrt{34}}{5} $
Option 4: $ \frac{\sqrt{24}}{5}$
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Option 1: $\frac{5}{12}$
Option 2: $\frac{12}{13}$
Option 3: $\frac{11}{12}$
Option 4: $\frac{5}{13}$
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Option 1: $2$
Option 2: $2\frac{1}{2}$
Option 3: $3$
Option 4: $\frac{4}{5}$
Question : If $\tan A=\frac{3}{8}$, then the value of $\frac{3 \sin A+2 \cos A}{3 \sin A-2 \cos A}$ is:
Option 1: $-\frac{13}{25}$
Option 2: $-\frac{25}{7}$
Option 3: $\frac{25}{8}$
Option 4: $\frac{13}{21}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile