Question : If $\tan A=\frac{4}{3}, 0 \leq A \leq 90^{\circ}$, then find the value of $\sin A$.
Option 1: $\frac{3}{5}$
Option 2: $1$
Option 3: $\frac{3}{4}$
Option 4: $\frac{4}{5}$
Correct Answer: $\frac{4}{5}$
Solution : Given that $\tan A = \frac{4}{3}$, Consider a right-angled triangle where the opposite side (perpendicular) is 4 units and the adjacent side (base) is 3 units. Using the Pythagorean theorem, the hypotenuse of this triangle can be calculated as $\sqrt{4^2 + 3^2} = 5$ units. Therefore, $\sin A = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{4}{5}$. Hence, the correct answer is $\frac{4}{5}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\operatorname{cosec} A+\cot A=3$, $0 \leq A \leq 90^{\circ}$, then find the value of cos A.
Option 1: $\frac{3}{4}$
Option 2: $\frac{2}{5}$
Option 3: $\frac{3}{5}$
Question : If $\cos A=\frac{1}{2}, 0 \leq A \leq 90^{\circ}$, then what is the value of sin (180 - A)?
Option 1: $\frac{1}{2}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $1$
Question : If $\frac{\tan\theta +\cot\theta }{\tan\theta -\cot\theta }=2, (0\leq \theta \leq 90^{0})$, then the value of $\sin\theta$ is:
Option 1: $\frac{2}{\sqrt3}$
Option 2: $\frac{\sqrt3}{2}$
Option 3: $\frac{1}{2}$
Question : Find the value of $\frac{\sin ^2 39^{\circ}+\sin ^2\left(90^{\circ}–39^{\circ}\right)}{\cos ^2 35^{\circ}+\cos ^2\left(90^{\circ}–35^{\circ}\right)}+3 \tan 25^{\circ} \tan 75^{\circ}$:
Option 1: 2
Option 2: 4
Option 3: 3
Option 4: 1
Question : Find the value of $\frac{\cos 65^{\circ}}{\sin 25^{\circ}}+\frac{5 \sin 19^{\circ}}{\cos 71^{\circ}}-\frac{3 \cos 28^{\circ}}{\sin 62^{\circ}}$.
Option 2: 0
Option 3: 1
Option 4: 3
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile