10 Views

Question : If $\tan A=\frac{4}{3}, 0 \leq A \leq 90^{\circ}$, then find the value of $\sin A$.

Option 1: $\frac{3}{5}$

Option 2: $1$

Option 3: $\frac{3}{4}$

Option 4: $\frac{4}{5}$


Team Careers360 16th Jan, 2024
Answer (1)
Team Careers360 17th Jan, 2024

Correct Answer: $\frac{4}{5}$


Solution : Given that $\tan A = \frac{4}{3}$,
Consider a right-angled triangle where the opposite side (perpendicular) is 4 units and the adjacent side (base) is 3 units. 
Using the Pythagorean theorem, the hypotenuse of this triangle can be calculated as $\sqrt{4^2 + 3^2} = 5$ units.
Therefore, $\sin A = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{4}{5}$. 
Hence, the correct answer is $\frac{4}{5}$.

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books