Question : If $\frac{2 \sin A-\cos A}{\sin A+\cos A}=1$, then find the value of $\cot A$.
Option 1: $1$
Option 2: $\frac{1}{2}$
Option 3: $\frac{1}{3}$
Option 4: $2$
Correct Answer: $\frac{1}{2}$
Solution : Given, $\frac{2 \sin A-\cos A}{\sin A+\cos A}=1$ Taking $\sin A$ as common ⇒ $\frac{\sin A(2-\frac{\cos A}{\sin A})}{\sin A(1+\frac{\cos A}{\sin A})}=1$ ⇒ $2-\cot A=1+\cot A$ ⇒ $2\cot A = 1$ ⇒ $\cot A = \frac12$ Hence, the correct answer is $\frac12$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.
Option 1: $\sqrt{\frac{1+\sin 2 A}{\cos 2 A}}$
Option 2: $\sqrt{\frac{1-\sin 2 A}{\cos 2 A}}$
Option 3: $\sqrt{\frac{1+\sin A}{\cos A}}$
Option 4: $\sqrt{\frac{1-\sin A}{\cos A}}$
Question : What is the value of $\frac{\sin (A+B)}{\sin A \cos B}$?
Option 1: $1 + \cot A \tan B$
Option 2: $1 + \tan A \cot B$
Option 3: $1 – \sin A \cos B$
Option 4: $1 − \cot A \tan B$
Question : If $1 + \sin^2 θ - 3\sinθ \cosθ = 0$, then the value of $\cotθ$ is:
Option 1: $0$
Option 2: $2$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{3}$
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Option 1: $\sqrt{2} \sin \theta$
Option 2: $\sqrt{2} \cos \theta$
Option 3: $\frac{1}{\sqrt{2}} \sin \theta$
Option 4: $\frac{1}{2}\cos \theta$
Question : If $x=\frac{2 \sin \theta}{(1+\cos \theta+\sin \theta)}$, then the value of $\frac{1-\cos \theta+\sin \theta}{(1+\sin \theta)}$ is:
Option 1: $\frac{x}{(1+x)}$
Option 2: $x$
Option 3: $\frac{1}{x}$
Option 4: $\frac{(1+x)}{x}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile