Question : If $\cos A=\frac{63}{65}$, then find the value of $\tan A+\cot A$ (up to two places of decimal).
Option 1: 4.19
Option 2: 2.76
Option 3: 3.19
Option 4: 5.23
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 4.19
Solution : Given, $\cos A=\frac{63}{65}$ We know, $\sin A = \sqrt{1-\cos^2 A}$ $⇒\sin A = \sqrt{1-(\frac{63}{65})^2}$ $⇒\sin A = \sqrt{(\frac{256}{65^2})}$ $\therefore \sin A =\frac{16}{65}$ Now, $\tan A+\cot A$ = $\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}$ = $\frac{\sin^2 A + \cos^2 A}{\sin A \cos A}$ = $\frac{1}{\sin A \cos A}$ = $\frac{65\times 65}{63\times 16}$ = $4.19$ Hence, the correct answer is 4.19.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\operatorname{cosec} A+\cot A=a \sqrt{b}$, then find the value of $\frac{\left(a^2 b-1\right)}{\left(a^2 b+1\right)}$.
Option 1: $\cos A$
Option 2: $\tan A$
Option 3: $\frac{1}{\sin A}$
Option 4: $\frac{1}{\cot A}$
Question : If $\sec A=\frac{9}{4}$, then what is the value of $\cot A$?
Option 1: $\frac{4}{\sqrt{65}}$
Option 2: $\frac{9}{\sqrt{65}}$
Option 3: $\frac{\sqrt{65}}{9}$
Option 4: $\frac{\sqrt{65}}{4}$
Question : If cos A = $\frac{5}{13}$, then what is the value of (tan A + cot A)?
Option 1: $\frac{60}{169}$
Option 2: $\frac{109}{169}$
Option 3: $\frac{169}{60}$
Option 4: $\frac{169}{109}$
Question : If $\operatorname{cos} \theta=\frac{4}{5}$, find the value of $\operatorname{cot} \theta+\tan \theta$.
Option 1: $\frac{12}{25}$
Option 2: $\frac{25}{12}$
Option 3: $\frac{27}{12}$
Option 4: $\frac{12}{27}$
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Option 1: $\frac{1}{ \sqrt{ 3}}$
Option 2: $\frac{10}{3}$
Option 3: $\frac{10}{ \sqrt{3}}$
Option 4: $\frac{1}{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile