Question : If $3\sin \theta +5\cos \theta =5$, then $5\sin \theta -3\cos \theta$ is equal to:
Option 1: $\pm 3$
Option 2: $\pm 5$
Option 3: $1$
Option 4: $\pm 2$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\pm 3$
Solution : Given, $3\sin\theta + 5\cos\theta =5$ squaring both sides, we get, $⇒9\sin^2\theta + 25\cos^2\theta+30\sin\theta \cos\theta =25$ $⇒ 30\sin\theta \cos\theta =25- 9\sin^2\theta - 25\cos^2\theta$--------------------------(1) To find $5\sin\theta-3\cos\theta$, $(5\sin\theta-3\cos\theta)^2 = 25\sin^2\theta+9\cos^2\theta-30\sin\theta \cos\theta$ Using equation(1), we get, $(5\sin\theta-3\cos\theta)^2 = 25\sin^2\theta+9\cos^2\theta-(25-9\sin^2\theta-25\cos^2\theta)$ $⇒ (5\sin\theta-3\cos\theta)^2 = 25\sin^2\theta+9\cos^2\theta-25+9\sin^2\theta+25\cos^2\theta$ $⇒ (5\sin\theta-3\cos\theta)^2 = 34\sin^2\theta+34\cos^2\theta-25$ $⇒ (5\sin\theta-3\cos\theta)^2 = 34(\sin^2\theta+\cos^2\theta)-25$ $⇒ (5\sin\theta-3\cos\theta)^2 = 34(1)-25$ $⇒ (5\sin\theta-3\cos\theta)^2 = 9$ $\therefore(5\sin\theta-3\cos\theta) = \pm 3$ Hence, the correct answer is $\pm3$.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : If $5\tan\theta=4$, then $\frac{5\sin\theta-3\cos\theta}{5\sin\theta+2\cos\theta}$ is equal to:
Option 1: $\frac{2}{3}$
Option 2: $\frac{1}{4}$
Option 3: $\frac{1}{6}$
Option 4: $\frac{1}{3}$
Question : If $(4 \sin \theta+5 \cos \theta)=3$, then the value of $(4 \cos \theta-5 \sin \theta)$ is:
Option 1: $3 \sqrt{2}$
Option 2: $4 \sqrt{2}$
Option 3: $2 \sqrt{3}$
Option 4: $2 \sqrt{5}$
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Option 1: $\frac{2}{5}$
Option 2: $\frac{1}{5}$
Option 3: $\frac{16}{25}$
Option 4: $\frac{3}{5}$
Question : The value of $\frac{\sin\theta-2\sin^{3}\theta}{2\cos^{3}\theta-\cos\theta}$ is equal to:
Option 1: $\sin\theta$
Option 2: $\cos\theta$
Option 3: $\tan\theta$
Option 4: $\cot\theta$
Question : What is the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}+\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}$?
Option 1: $\frac{1}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 2: $2\left(\sin ^2 \theta-\cos ^2 \theta\right)$
Option 3: $\frac{2}{\left(\sin ^2 \theta-\cos ^2 \theta\right)}$
Option 4: $\sin ^2 \theta-\cos ^2 \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile