Question : If $\operatorname{cosec} A+\cot A=7$, then $\operatorname{cosec} A$ is equal to:
Option 1: $\frac{11}{7}$
Option 2: $\frac{16}{7}$
Option 3: $\frac{25}{7}$
Option 4: $\frac{19}{7}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{25}{7}$
Solution : We know if $\operatorname{cosec}x + \cot x = a$, then $\operatorname{cosec} x - \cot x = \frac{1}{a}$ Given, $\operatorname{cosec} A+\cot A=7$ ........(1) ⇒ $\operatorname{cosec} A-\cot A=\frac17$ .........(2) Solving these equations to get the value of $\operatorname{cosec} A$ (1) + (2), we get, ⇒ $\operatorname{cosec} A+\cot A+\operatorname{cosec} A-\cot A=7+\frac{1}{7}$ ⇒ $2\operatorname{cosec} A = \frac{49+1}{7}$ ⇒ $2\operatorname{cosec} A = \frac{50}{7}$ $\therefore \operatorname{cosec} A = \frac{25}{7}$ Hence, the correct answer is $\frac{25}{7}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Simplify the given equation: $\frac{\cot^3A–1}{\cot A–1}$
Option 1: $\operatorname{cosec}^2 \mathrm{A}-\cot \mathrm{A}$
Option 2: $\operatorname{cosec}^2 A+\cot A$
Option 3: $\cot ^2 \mathrm{A}+\operatorname{cosec} \mathrm{A}$
Option 4: $\cot ^2 \mathrm{A}-\operatorname{cosec} \mathrm{A}$
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Option 1: $2 \sec \theta$
Option 2: $2 \operatorname{cosec} \theta$
Option 3: $2 \cot \theta$
Option 4: $\operatorname{cosec} \theta+\cot \theta$
Question : If $\operatorname{cosec} \theta-\cot \theta=\frac{7}{2}$, then the value of $\operatorname{cosec} \theta$ will be:
Option 1: $\frac{49}{28}$
Option 2: $\frac{21}{28}$
Option 3: $\frac{47}{28}$
Option 4: $\frac{53}{28}$
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Option 1: $\frac{16}{25}$
Option 2: $\frac{40}{41}$
Option 3: $\frac{41}{40}$
Option 4: $\frac{31}{30}$
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Option 1: $2$
Option 2: $0$
Option 3: $1$
Option 4: $3$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile