Question : If $3\left(\cot ^2 \theta-\cos ^2 \theta\right)=1-\sin ^2 \theta, 0^{\circ}<\theta<90^{\circ}$, then $\theta$ is equal to:
Option 1: $30^{\circ}$
Option 2: $60^{\circ}$
Option 3: $45^{\circ}$
Option 4: $15^{\circ}$
Correct Answer: $60^{\circ}$
Solution : Given: $3\left(\cot ^2 \theta-\cos ^2 \theta\right)=1-\sin ^2 \theta$ ⇒ $3\left(\cot ^2 \theta-\cos ^2 \theta\right)=\cos ^2 \theta$ ⇒ $3\cot ^2 \theta = 4\cos ^2 \theta$ ⇒ $\frac{3\cos^2\theta}{\sin^2 \theta} = 4\cos ^2 \theta$ ⇒ $\sin^2 \theta = \frac{3}{4}$ ⇒ $\sin \theta = \frac{\sqrt3}{2}$ ⇒ $\theta = 60^{\circ}$ Hence, the correct answer is $60^{\circ}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$, where $0^{\circ}<\theta<90^{\circ}$ then the value of $\theta$ is:
Option 1: $45^{\circ}$
Option 2: $50^{\circ}$
Option 3: $60^{\circ}$
Option 4: $30^{\circ}$
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Option 1: 0
Option 2: 2
Option 3: 5
Option 4: 1
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Option 1: $\frac{2 \sqrt{3}+1}{2}$
Option 2: $3 \sqrt{2}$
Option 3: $\frac{3 \sqrt{3}+1}{2}$
Option 4: $\frac{\sqrt{3}+2}{2}$
Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Option 1: 2
Option 2: $\sqrt{2}$
Option 3: 1
Option 4: $\frac{2 \sqrt{3}}{3}$
Question : If $k\left(\tan 45^{\circ} \sin 60^{\circ}\right)=\cos 60^{\circ} \cot 30^{\circ}$, then the value of k is:
Option 1: $1$
Option 2: $2$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\sqrt{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile