Question : If $2\tan^2A+4\cos^4A=3$, then the possible value of $A$ is:
Option 1: 45°
Option 2: 60°
Option 3: 0°
Option 4: 30°
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 45°
Solution : Given: $2\tan^2A+4\cos^4A=3$ Take $A = 45°$ then, $2\tan^2A+4\cos^4A=2(1)^2+4(\frac{1}{\sqrt2})^4 = 2 + 1 = 3$ So, $A = 45°$ satisfies the given equation. Hence, the correct answer is 45°.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Which of the following is a value of $\theta$, when $\cos ^2 \theta-2+\cos \theta=0$?
Option 1: 60°
Option 2: 90°
Option 3: 30°
Option 4: 0°
Question : If A = 60°, B = 30°, then find the value of sin A cos B + cos A sin B.
Option 1: 0
Option 2: 12
Option 3: 13
Option 4: 1
Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Option 1: 30°
Option 3: 45°
Option 4: 75°
Question : The value of $\cos \ 0°+\cos\ 1°+\cos\ 2°......\cos\ 180°$ is:
Option 1: $0$
Option 2: $1$
Option 3: $\frac{\sqrt3}{2}$
Option 4: $\frac{1}{2}$
Question : If $\tan(A+B)=\sqrt{3}$, and $\tan(A-B)=\frac{1}{\sqrt{3}}$, $\angle A+\angle B<90°$; $A\geq B$ then $\angle A$ is:
Option 1: 90°
Option 2: 30°
Option 4: 60°
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile