Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Option 1: $\frac{2}{3}$
Option 2: $\frac{2}{\sqrt3}$
Option 3: $\frac{4}{\sqrt3}$
Option 4: $\frac{1}{\sqrt3}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{2}{3}$
Solution : Given: $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$ -------------------------(1) We know, $\sec^2\theta-\tan^2\theta=1$ ⇒ $(\sec\theta+\tan\theta)(\sec\theta-\tan\theta)=1$ ⇒ $(\sec\theta+\tan\theta)(\frac{1}{\sqrt3})=1$ ⇒ $(\sec\theta+\tan\theta)=\sqrt3$ -----------------------------------(2) Now solving equation (1) and equation (2) we get, $\sec\theta=\frac{2}{\sqrt3}$ and $\tan\theta=\frac{1}{\sqrt3}$ So $\sec\theta.\tan\theta=\frac{2}{\sqrt3}×\frac{1}{\sqrt3}=\frac{2}{3}$ Hence, the correct answer is $\frac{2}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Find the value of: $\sqrt{\frac{1 - \sin 3 \theta}{1 + \sin 3 \theta}}$
Option 1: $\sec 3 \theta - \tan 3 \theta$
Option 2: $(\sec 3 \theta - \tan 3 \theta)^3$
Option 3: $(\sec 3 \theta - \tan 3 \theta)^2$
Option 4: $\sec 3 \theta + \tan 3 \theta$
Question : If $\sec \theta+\tan \theta=3$, then the value of $\sec \theta$ is:
Option 1: $\frac{4}{3}$
Option 2: $\frac{3}{4}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{5}{3}$
Question : Find the value of $\sec\theta - \tan\theta$, if $\sec\theta + \tan\theta = \sqrt{5}$.
Option 1: $5$
Option 2: $5 \frac{1}{5}$
Option 3: $\frac{\sqrt{5}}{5}$
Option 4: $\sqrt{5}$
Question : If $\sec\theta+\tan\theta=5$, then find the value of $\tan\theta$.
Option 1: $\frac{5}{12}$
Option 2: $\frac{13}{5}$
Option 3: $\frac{13}{3}$
Option 4: $\frac{12}{5}$
Question : If $\sec^2 \theta+\tan^2 \theta=\frac{25}{18}$, the value of $\sec^4 \theta-\tan^4 \theta$ is:
Option 1: $\frac{18}{25}$
Option 2: $\frac{25}{12}$
Option 3: $\frac{25}{9}$
Option 4: $\frac{25}{18}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile