Question : If $\tan\left ( A-B \right )=x$, then the value of $x$ is:
Option 1: $\frac{\tan A+\tan B}{1-\tan A \tan B}$
Option 2: $\frac{\tan A+\tan B}{1+\tan A \tan B}$
Option 3: $\frac{\tan A-\tan B}{1-\tan A \tan B}$
Option 4: $\frac{\tan A-\tan B}{1+\tan A \tan B}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\tan A-\tan B}{1+\tan A \tan B}$
Solution : $\tan(A-B) = \frac{\sin(A-B)}{\cos(A-B)}$ We know that, $\sin(A-B)=\sin A \cos B - \cos A \sin B$ $\cos(A-B)=\cos A \cos B + \sin A \sin B$ On substituting the values, $\tan(A-B) = \frac{\sin A \cos B - \cos A \sin B}{\cos A \cos B + \sin A \sin B}$ Dividing the numerator and the denominator by $\cos A \cos B$, we get, $⇒\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ Hence, the correct answer is $\frac{\tan A - \tan B}{1 + \tan A \tan B}$.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Option 1: $\frac{2xyz}{abc}$
Option 2: $\frac{xyz}{abc}$
Option 3: $0$
Option 4: $\frac{3xyz}{abc}$
Question : If $A=30^{\circ}$, then find the value of $\frac{(2 \tan A)}{\left(1-\tan^2 A\right)}$.
Option 1: $4 \sqrt{3}$
Option 2: $\frac{3}{\sqrt{3}}$
Option 3: $3$
Option 4: $2 \sqrt{3}$
Question : If $\left(x-\frac{1}{x}\right) =4$, then what is the value of $\left(x^6+\frac{1}{x^6}\right)$?
Option 1: 4689
Option 2: 4786
Option 3: 5832
Option 4: 5778
Question : If $3a^{2}= b^{2}\neq0$, then the value of $\frac{\left (a+b \right)^{3}-\left (a-b \right)^{3}}{\left (a+b \right)^{2}+\left (a-b \right)^{2}}$ is:
Option 1: $\frac{3b}{2}$
Option 2: $b$
Option 3: $\frac{b}{2}$
Option 4: $\frac{2b}{3}$
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Option 1: $\frac{2 \sqrt{6}-6}{5}$
Option 2: $\frac{4 \sqrt{6}-6}{5}$
Option 3: $\frac{4 \sqrt{6}-6}{3}$
Option 4: $\frac{4 \sqrt{3}-6}{5}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile