Question : If $8 \cot \theta=6$, then the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$ is:
Option 1: 12
Option 2: 7
Option 3: 2
Option 4: 5
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 7
Solution : $8 \cot \theta = 6$ $\therefore \cot \theta = \frac{6}{8}$ Now, $\frac{(\sin \theta+\cos \theta)}{(\sin \theta-\cos \theta)}$ Dividing numerator and denominator by $\sin \theta$ $=\frac{(1+\cot \theta )}{(1-\cot \theta)}$ $=\frac{1+ \frac{6}{8}}{1- \frac{6}{8}}$ $=\frac{\frac{14}{8}}{\frac{2}{8}}$ $=\frac{14}{2}$ $=7$ Hence, the correct answer is 7.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Option 1: $2$
Option 2: $2\frac{1}{2}$
Option 3: $3$
Option 4: $\frac{4}{5}$
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Option 1: $\frac{5}{12}$
Option 2: $\frac{12}{13}$
Option 3: $\frac{11}{12}$
Option 4: $\frac{5}{13}$
Question : If $\operatorname{sin} \theta=\frac{4}{5}$, find the value of $\tan \theta-\operatorname{cot} \theta$.
Option 2: $\frac{7}{9}$
Option 3: $\frac{7}{12}$
Option 4: $\frac{7}{8}$
Question : Find the value of the following expression. $5\left(\sin ^4 \theta+\cos ^4 \theta\right)+3\left(\sin ^6 \theta+\cos ^6 \theta\right)+19 \sin ^2 \theta \cos ^2 \theta$
Option 1: 8
Option 2: 5
Option 3: 6
Option 4: 7
Question : If $\frac{(3 \sin \theta-\cos \theta)}{(\cos \theta+\sin \theta)}=1$, then the value of $\cot \theta$ is:
Option 1: 3
Option 2: 0
Option 3: 1
Option 4: 2
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile