Question : If $\frac{\sqrt{38-5 \sqrt{3}}}{\sqrt{26+7 \sqrt{3}}}=\frac{a+b \sqrt{3}}{23}, b>0$, then the value of $(b-a)$ is:
Option 1: 7
Option 2: 18
Option 3: 29
Option 4: 11
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 29
Solution : $\frac{\sqrt{38-5 \sqrt{3}}}{\sqrt{26+7 \sqrt{3}}}=\frac{a+b \sqrt{3}}{23}, b>0$ $⇒\frac{\sqrt{38-5 \sqrt{3}}}{\sqrt{26+7 \sqrt{3}}}=\frac{a+b \sqrt{3}}{23}$ $⇒\frac{\sqrt{(38-5 \sqrt{3)}({26-7 \sqrt{3}})}}{\sqrt{(26+7 \sqrt{3})({26-7 \sqrt{3}})}}=\frac{a+b \sqrt{3}}{23}$ $⇒\frac{\sqrt{(988+105-396\sqrt3)}}{\sqrt{(529)}}=\frac{a+b \sqrt{3}}{23}$ $⇒\frac{\sqrt{(11^2+(18\sqrt3)^2-2\times11\times18\sqrt3)}}{\sqrt{(23^2)}}=\frac{a+b \sqrt{3}}{23}$ $⇒\frac{\sqrt{(18\sqrt3-11)^2}}{23}=\frac{a+b \sqrt{3}}{23}$ $⇒\frac{(18\sqrt3-11)}{23}=\frac{a+b \sqrt{3}}{23}$ On comparing, $a=-11$ and $b=18$ So, $(b-a)=18+11 = 29$ Hence, the correct answer is 29.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\frac{\sqrt{26-7 \sqrt{3}}}{\sqrt{14+5 \sqrt{3}}}=\frac{b+a \sqrt{3}}{11}, b>0$, then what is the value of $\sqrt{(\mathrm{b}-\mathrm{a})}$?
Option 1: 5
Option 2: 25
Option 3: 12
Option 4: 9
Question : If $a=\frac{1}{a - 5}(a>0)$, then the value of $a+\frac{1}{a}$ is:
Option 1: $\sqrt{29}$
Option 2: $–\sqrt{27}$
Option 3: $-\sqrt{29}$
Option 4: $\sqrt{27}$
Question : If $\frac{22 \sqrt{2}}{4 \sqrt{2}-\sqrt{3+\sqrt{5}}}=a+\sqrt{5} b$, with $a, b>0$, then what is the value of $(a b):(a+b)$?
Option 1: 7 : 8
Option 2: 7 : 4
Option 3: 4 : 7
Option 4: 8 : 7
Question : Which of the following is TRUE? I. $\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt5}$ II. $\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt5}$ III. $\frac{1}{\sqrt5}>\frac{1}{\sqrt[3]{12}}>\frac{1}{\sqrt[4]{29}}$ IV. $\frac{1}{\sqrt5}>\frac{1}{\sqrt[4]{29}}>\frac{1}{\sqrt[3]{12}}$
Option 1: Only I
Option 2: Only II
Option 3: Only III
Option 4: Only IV
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Option 1: $- \frac{7}{3}$
Option 2: $\frac{7}{3}$
Option 3: $\frac{3}{7}$
Option 4: $-\frac{3}{7}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile