Question : If $\tan\alpha=2$, then the value of $\frac{\operatorname{cosec}^{2}\alpha-\sec^{2}\alpha}{\operatorname{cosec}^{2}\alpha+\sec^{2}\alpha}$ is:
Option 1: $-\frac{15}{9}$
Option 2: $-\frac{3}{5}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{17}{5}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $-\frac{3}{5}$
Solution : Given: $\tan\alpha=2$ We know that $\sec^{2}\alpha = 1 + \tan^{2}\alpha$ and $\operatorname{cosec}^{2}\alpha = 1 + \cot^{2}\alpha$ Since $\tan\alpha = 2$, we have $\sec^{2}\alpha = 1 + (2)^{2} = 5$ Also, $\cot\alpha = \frac{1}{\tan\alpha} = \frac{1}{2}$ So $\operatorname{cosec}^{2}\alpha = 1 + (\frac{1}{2})^{2} = \frac{5}{4}$ Putting the values, we get: $\frac{\operatorname{cosec}^{2}\alpha-\sec^{2}\alpha}{\operatorname{cosec}^{2}\alpha+\sec^{2}\alpha} = \frac{\frac{5}{4}-5}{\frac{5}{4}+5} = \frac{\frac{-15}{4}}{\frac{25}{4}} = -\frac{15}{25} = -\frac{3}{5}$ Hence, the correct answer is $-\frac{3}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Using $\operatorname{cosec}(\alpha+\beta)=\frac{\sec \alpha \times \sec \beta \times \operatorname{cosec} \alpha \times \operatorname{cosec} \beta}{\sec \alpha \times \operatorname{cosec} \beta+\operatorname{cosec} \alpha \times \sec \beta}$, find the value of $\operatorname{cosec} 75°$.
Option 1: $\frac{\sqrt{6}+\sqrt{2}}{4}$
Option 2: $\frac{\sqrt{6}-\sqrt{2}}{4}$
Option 3: $\sqrt{6}-\sqrt{2}$
Option 4: $\sqrt{6}+\sqrt{2}$
Question : If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{1}{7}, \theta$ lies in first quadrant, then the value of $\frac{\operatorname{cosec} \theta+\cot ^2 \theta}{\operatorname{cosec} \theta-\cot ^2 \theta}$ is:
Option 1: $\frac{19}{5}$
Option 2: $\frac{22}{3}$
Option 3: $\frac{37}{12}$
Option 4: $\frac{37}{19}$
Question : If $\tan ^2 \alpha=3+Q^2$, then $\sec \alpha+\tan ^3 \alpha \operatorname{cosec} \alpha=?$
Option 1: $\left(3+Q^2\right)^{\frac{3}{2}}$
Option 2: $\left(7+Q^2\right)^{\frac{3}{2}}$
Option 3: $\left(5-Q^2\right)^{\frac{3}{2}}$
Option 4: $\left(4+Q^2\right)^{\frac{3}{2}}$
Question : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ is equal to:
Option 1: $2 \sec \theta$
Option 2: $2 \operatorname{cosec} \theta$
Option 3: $\operatorname{cosec} \theta$
Option 4: $\sec \theta$
Question : Which of the following is equal to $\frac{1}{\tan \theta}+\tan \theta$?
Option 1: $\sec \theta \operatorname{cosec} \theta$
Option 2: $1$
Option 3: $\frac{\operatorname{cosec} \theta}{\sec \theta}$
Option 4: $\tan ^2 \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile