Question : If $\tan\theta +\cot\theta =2$, then the value of $\left (\tan^{n}\theta+\cot^{n}\theta \right)$ is:
Option 1: $2^{n}$
Option 2: $2^{\frac{n}{2}}$
Option 3: $2^{\frac{1}{2}}$
Option 4: $2$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2$
Solution : Given: $\tan\theta +\cot\theta =2$ Putting $\theta = 45^\circ$, LHS $=\tan 45^\circ + \cot 45^\circ = 1 + 1 =2=$ RHS (satisfies) So, $\tan^{n}\theta+\cot^{n}\theta$ $=\tan^{n}45^\circ+\cot^{n}45^\circ$ $= 1 + 1$ $= 2$ Hence, the correct answer is $2$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Option 1: $3$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $\frac{1}{3}$
Option 4: $\sqrt{3}$
Question : If $\theta$ is a positive acute angle and $4\sin^{2}\theta =3$, then the value of $\left (\tan\theta-\cot\frac{\theta}{2}\right)$ is:
Option 1: $1$
Option 2: $0$
Option 3: $\sqrt{3}$
Option 4: $\frac{1}{\sqrt{3}}$
Question : The value of $\frac{3\left(\operatorname{cosec}^2 26^{\circ}-\tan ^2 64^{\circ}\right)+\left(\cot ^2 42^{\circ}-\sec ^2 48^{\circ}\right)}{\cot \left(22^{\circ}-\theta\right)-\operatorname{cosec}^2\left(62^{\circ}+\theta\right)-\tan \left(\theta+68^{\circ}\right)+\tan ^2\left(28^{\circ}-\theta\right)}$ is:
Option 1: 3
Option 2: 4
Option 3: –1
Option 4: –2
Question : The value of $\frac{3\left(\cot ^2 47^{\circ}-\sec ^2 43^{\circ}\right)-2\left(\tan ^2 23^{\circ}-\operatorname{cosec}^2 67^{\circ}\right)}{\operatorname{cosec}^2\left(68^{\circ}+\theta\right)-\tan \left(\theta+61^{\circ}\right)-\tan ^2\left(22^{\circ}-\theta\right)+\cot \left(29^{\circ}-\theta\right)}$ is:
Option 1: –1
Option 2: 1
Option 3: 5
Option 4: 0
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Option 1: $\frac{2}{3}$
Option 2: $\frac{2}{\sqrt3}$
Option 3: $\frac{4}{\sqrt3}$
Option 4: $\frac{1}{\sqrt3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile