Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Option 1: $\frac{y^{2}}{x\sqrt{y^{2}–x^{2}}}$
Option 2: $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$
Option 3: $\frac{x^{2}}{y\sqrt{x^{2}–y^{2}}}$
Option 4: $\frac{y^{2}}{x\sqrt{x^{2}–y^{2}}}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$
Solution : Given: $\sin17°=\frac{x}{y}$ BC = $\sqrt{y^{2}-x^{2}}$ So, $\sec17°=\frac{y}{\sqrt{y^{2}–x^{2}}}$ and $\sin73°=\frac{\sqrt{y^{2}–x^{2}}}{y}$ $\therefore(\sec17°–\sin73°)=\frac{y}{\sqrt{y^{2}–x^{2}}}–\frac{\sqrt{y^{2}–x^{2}}}{y}$= $\frac{y^{2}–(y^{2}–x^{2})}{y\sqrt{y^{2}–x^{2}}}$= $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$ Hence, the correct answer is $\frac{x^{2}}{y\sqrt{y^{2}–x^{2}}}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile