Question : If $x+\frac{1}{x}=2$. Then, the value of $x^7+\frac{1}{x^5}$ is:
Option 1: $2^{12}$
Option 2: $2$
Option 3: $2^5$
Option 4: $2^7$
Correct Answer: $2$
Solution : Given: $x+\frac{1}{x}=2$ $x+\frac{1}{x} = 2$ In the above equation, substitute $x = 1$, $1+\frac{1}{1} = 2$ Then, the value of $x^{7}+\frac{1}{x^{5}}$ is, $1^{7}+\frac{1}{1^{5}} = 2$ Hence, the correct answer is 2.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Option 1: $\frac{3\sqrt{3}}{5}$
Option 2: $\frac{3\sqrt{15}}{5}$
Option 3: $\frac{3\sqrt{15}}{8}$
Option 4: $\frac{3\sqrt{5}}{8}$
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Option 1: $2$
Option 2: $\frac{\sqrt{15}}{2}$
Option 3: $\sqrt{5}$
Option 4: $\sqrt{3}$
Question : If $\frac{x^{2}-x+1}{x^{2}+x+1}=\frac{2}{3}$, then the value of $\left (x+\frac{1}{x} \right)$ is:
Option 1: 4
Option 2: 5
Option 3: 6
Option 4: 8
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Option 1: $1$
Option 2: $\frac{(x-3)}{(x+3)}$
Option 3: $\frac{(x+4)}{(x-3)}$
Option 4: $\frac{(x-3)}{(x+4)}$
Question : If $x\left(5-\frac{2}{x}\right)=\frac{5}{x}$, then the value of $x^2+\frac{1}{x^2}$ is:
Option 1: $\frac{54}{25}$
Option 2: $\frac{53}{28}$
Option 3: $\frac{53}{27}$
Option 4: $\frac{54}{23}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile