Question : If $\frac{8+2 \sqrt{3}}{3 \sqrt{3}+5}=a \sqrt{3}–b$, then the value of $a + b$ is equal to:
Option 1: 18
Option 2: 15
Option 3: 24
Option 4: 16
New: SSC CGL 2025 Tier-1 Result
Latest: SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 18
Solution : Given: $\frac{8+2 \sqrt{3}}{3 \sqrt{3}+5}=a \sqrt{3}–b$ Rationalize the given fraction, $\frac{(8+2 \sqrt{3})\times(3\sqrt3–5)}{(3 \sqrt{3}+5)\times (3\sqrt3–5)}=\frac{24\sqrt3–40+18–10\sqrt3}{27–25}$ ⇒ $\frac{14\sqrt3–22}{2}=7\sqrt3–11$ Now, compare the value with the given expression $a \sqrt{3}–b$, we get, $7\sqrt3–11=a \sqrt{3}–b$ ⇒ $a=7,b=11$ The value of $a + b=7+11=18$. Hence, the correct answer is 18.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $5–\frac{8+2\sqrt{15}}{4}–\frac{1}{8+2\sqrt{15}}$ is equal to:
Option 1: $\frac{1}{4}$
Option 2: $1$
Option 3: $\frac{2}{3}$
Option 4: $\frac{1}{2}$
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Option 1: $ \frac{5}{\sqrt{34}} $
Option 2: $ \frac{5}{\sqrt{24}} $
Option 3: $ \frac{\sqrt{34}}{5} $
Option 4: $ \frac{\sqrt{24}}{5}$
Question : If $\frac{x}{2}-\frac{\left [4\left (\frac{15}{2}-\frac{x}{3} \right ) \right ]}{3} = –\frac{x}{18}$ then what is the value of $x$?
Option 1: –$10$
Option 2: $\frac{9}{8}$
Option 3: $10$
Option 4: $–\frac{9}{8}$
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Option 1: $\frac{3}{4}$
Option 2: $\frac{4}{3}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{5}{3}$
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Option 1: $2-2 \sqrt{2}$
Option 2: $4+2 \sqrt{2}$
Option 3: $4-2 \sqrt{2}$
Option 4: $2+2 \sqrt{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile