Question : If $\cos A + \cos B + \cos C = 3$, then what is the value of $\sin A + \sin B + \sin C$?
Option 1: $1$
Option 2: $2$
Option 3: $0$
Option 4: $-1$
Correct Answer: $0$
Solution : The equation $\cos A + \cos B + \cos C = 3$ holds when $A = B = C = 0°$ because the maximum value of $\cos \theta$ is $1$. Since $\sin 0° = 0$, the value of $\sin A + \sin B + \sin C$ would be $\sin 0° + \sin 0° + \sin 0° = 0 + 0 + 0 = 0$. Hence, the correct answer is $0$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\sin A+\sin ^2 A=1$, then the value of $\cos ^4 A+\cos ^6 A$ is:
Option 1: $\cos A$
Option 2: $\sin A$
Option 3: 1
Option 4: 0
Question : If $1 + \sin^2 θ - 3\sinθ \cosθ = 0$, then the value of $\cotθ$ is:
Option 1: $0$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{3}$
Question : If $\frac{2 \sin A-\cos A}{\sin A+\cos A}=1$, then find the value of $\cot A$.
Option 2: $\frac{1}{2}$
Option 3: $\frac{1}{3}$
Option 4: $2$
Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Option 3: $\sqrt2$
Option 4: $0$
Question : If $\cos \theta+\sec \theta=2$, then the value of $\sin ^6 \theta+\cos ^6 \theta$ is:
Option 1: $\frac{1}{3}$
Option 2: $0$
Option 3: $1$
Option 4: $\frac{1}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile