Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Option 1: 2
Option 2: $\sqrt{2}$
Option 3: 1
Option 4: $\frac{2 \sqrt{3}}{3}$
Correct Answer: $\frac{2 \sqrt{3}}{3}$
Solution : $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1)$ $\Rightarrow \frac{\cos\ \theta\ +\ \sin\ \theta}{\cos\ \theta\ -\ \sin\ \theta}\ =\ \frac{\sqrt{3}+\ 1}{\sqrt{3}-\ 1}$ By componendo and dividendo $\Rightarrow \frac{\cos\ \theta}{\sin\ \theta}\ =\ \frac{\sqrt{3}}{1}$ $\Rightarrow \cot\ \theta = \sqrt{3}=\cot30^\circ$ $\Rightarrow \theta = 30^\circ$ $\therefore \sec\ 30^\circ=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$ Hence, the correct answer is $\frac{2 \sqrt{3}}{3}$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Option 1: $1+2 \sqrt{3}$
Option 2: $\frac{1+2 \sqrt{3}}{3}$
Option 3: $\frac{2+\sqrt{3}}{3}$
Option 4: $2+\sqrt{3}$
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Option 1: $\frac{2 \sqrt{3}+1}{2}$
Option 2: $3 \sqrt{2}$
Option 3: $\frac{3 \sqrt{3}+1}{2}$
Option 4: $\frac{\sqrt{3}+2}{2}$
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Option 1: 0
Option 2: 2
Option 3: 5
Option 4: 1
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta-\tan \theta$ is:
Option 1: $\frac{1+2 \sqrt{3}}{2}$
Option 2: $\frac{2-\sqrt{3}}{2}$
Option 3: $\frac{2+\sqrt{3}}{2}$
Option 4: $\frac{1-2 \sqrt{3}}{2}$
Question : If $4-2 \sin ^2 \theta-5 \cos \theta=0,0^{\circ}<\theta<90^{\circ}$, then the value of $\cos \theta+\tan \theta$ is:
Option 1: $\frac{2-\sqrt{3}}{2}$
Option 2: $\frac{1+2 \sqrt{3}}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile