Question : If $ (a-b):(b-c):(c-d) =1:2:3$, then what is the value of $(a + d):c$ ?
Option 1: $1:2$
Option 2: $2:1$
Option 3: $4:1$
Option 4: $3:1$
Correct Answer: $2:1$
Solution : $\frac{a-b}{b-c}=\frac{1}{2}⇒2a+c = 3b$ ........(1) $\frac{a-b}{c-d}=\frac{1}{3} ⇒3a-3b = c-d$ ........(2) Substituting the value of $b$ from (1) in (2), $3a-2a-c=c-d$ ⇒ $a+d = 2c$ $\therefore (a + d):c = \frac{2c}{c} = 2:1$ Hence, the correct answer is $2:1$.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Option 1: 1
Option 2: 3
Option 3: - 1
Option 4: 0
Question : If $a, b, c$ are all non-zero and $a+b+c=0$, then find the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{ab}$.
Option 1: $3$
Option 2: $4$
Option 3: $1$
Option 4: $\frac{1}{2}$
Question : If $(a^2 = b + c)$, $(b^2 = a + c)$, $(c^2 = b + a)$. Then, what will be the value of $(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})$?
Option 1: –1
Option 2: 2
Option 3: 1
Question : If $\cos A + \cos B + \cos C = 3$, then what is the value of $\sin A + \sin B + \sin C$?
Option 1: $1$
Option 2: $2$
Option 3: $0$
Option 4: $-1$
Question : If $a= 9.6,b= 4.44,$ and $c= 5.16$, then the value of $a^3- b^3- c^3- 3 abc$ is:
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 1
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile