Question : If $3 \operatorname{cosec} A=7$, then what is the value of $\cos A \tan A$?
Option 1: $\frac{2 \sqrt{10}}{7}$
Option 2: $\frac{3}{7}$
Option 3: $\frac{4}{7}$
Option 4: $\frac{\sqrt{10}}{7}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{7}$
Solution : Given: $3 \operatorname{cosec} A=7$ ⇒ $\operatorname{cosec} A=\frac{7}{3}$ ⇒ $\frac{1}{\sin A}=\frac{7}{3}$ ⇒ $\sin A=\frac{3}{7}$ $\therefore$ $\cos A \tan A=\cos A\times\frac{\sin A}{\cos A}=\sin A=\frac{3}{7}$ Hence, the correct answer is $\frac{3}{7}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Option 1: $2 \cos A$
Option 2: $\sec A$
Option 3: $2\cos A$
Option 4: $2 \sec A$
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Option 1: $\frac{7}{6 \sqrt{3}}$
Option 2: $\frac{\sqrt{3}}{6}$
Option 3: $\frac{7}{6}$
Option 4: $\frac{7}{2 \sqrt{3}}$
Question : If $\theta$ is a positive acute angles and $\operatorname{cosec}\theta =\sqrt{3}$, then the value of $\cot \theta -\operatorname{cosec}\theta$ is:
Option 1: $\sqrt2-\sqrt3$
Option 2: $\frac{\sqrt{2}(3+\sqrt{3})}{3}$
Option 3: $\frac{\sqrt{2}(3-\sqrt{3})}{3}$
Option 4: $\frac{3\sqrt{2}+\sqrt{3}}{3}$
Question : If $\cos \theta=\frac{9}{13}$, then what is the value of $\operatorname{cosec} \theta$?
Option 1: $\frac{13}{\sqrt{22}}$
Option 2: $\frac{13 \sqrt{22}}{44}$
Option 3: $\frac{2 \sqrt{22}}{13}$
Option 4: $\frac{\sqrt{22}}{13}$
Question : If $\operatorname{cosec B} = \frac{3}{2}$, then what is the value of $\mathrm{\cot B \sin B} $?
Option 1: $\frac{\sqrt{5}}{3}$
Option 2: $\frac{4}{3 \sqrt{3}}$
Option 3: $\frac{3 \sqrt{2}}{2}$
Option 4: $\frac{2 \sqrt{5}}{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile