Question : If $\sec A=\frac{9}{4}$, then what is the value of $\cot A$?
Option 1: $\frac{4}{\sqrt{65}}$
Option 2: $\frac{9}{\sqrt{65}}$
Option 3: $\frac{\sqrt{65}}{9}$
Option 4: $\frac{\sqrt{65}}{4}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4}{\sqrt{65}}$
Solution : Given: $\sec A=\frac{9}{4}$ We know that, $\sec^2 A-\tan^2 A=1$ ⇒ $\tan^2 A=\sec^2 A-1$ Putting the value, we get: ⇒ $\tan^2 A=(\frac{9}{4})^2-1$ ⇒ $\tan^2 A=\frac{81}{16}-1$ ⇒ $\tan^2 A=\frac{65}{16}$ ⇒ $\tan A=\frac{\sqrt{65}}{4}$ $\therefore \cot A=\frac{4}{\sqrt{65}}$ Hence, the correct answer is $\frac{4}{\sqrt{65}}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Option 1: $\frac{3 \sqrt{3}}{2}$
Option 2: $\frac{\sqrt{3}}{2}$
Option 3: $\frac{2}{3 \sqrt{3}}$
Option 4: $\frac{2}{\sqrt{3}}$
Question : If $\operatorname{cosec B} = \frac{3}{2}$, then what is the value of $\mathrm{\cot B \sin B} $?
Option 1: $\frac{\sqrt{5}}{3}$
Option 2: $\frac{4}{3 \sqrt{3}}$
Option 3: $\frac{3 \sqrt{2}}{2}$
Option 4: $\frac{2 \sqrt{5}}{3}$
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Option 1: $\frac{1}{ \sqrt{ 3}}$
Option 2: $\frac{10}{3}$
Option 3: $\frac{10}{ \sqrt{3}}$
Option 4: $\frac{1}{3}$
Question : If $\sqrt{2} \sec ^2 \theta-4 \sec \theta+2 \sqrt{2}=0$, then what is the value $\sin ^2 \theta+\tan ^2 \theta$?
Option 1: $\frac{1}{2}$
Option 2: $\frac{2}{3}$
Option 3: $\frac{5}{2}$
Option 4: $\frac{3}{2}$
Question : If $\cos \theta+\sec \theta=\sqrt{3}$, then the value of $\cos ^3 \theta+\sec ^3 \theta$ is:
Option 1: $0$
Option 2: $\frac{1}{\sqrt{3}}$
Option 3: $\sqrt{3}$
Option 4: $2 \sqrt{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile