Question : If $6^{x}=3^{y}=2^{z}$, then what is the value of $\frac{1}{y}+\frac{1}{z}-\frac{1}{x}$?
Option 1: 1
Option 2: 0
Option 3: 3
Option 4: 6
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 0
Solution : Given, $6^{x}=3^{y}=2^{z}$ Consider, $6^{x}=3^{y}=2^{z}=k$(say), [$k$ is some variable] ⇒ $6^x=k$ ⇒ $6=k^{\frac{1}{x}}$ .....(i) Similarly, $3=k^{\frac{1}{y}}$ .........(ii) And $2=k^{\frac{1}{z}}$ ..........(iii) Multiplying (ii) and (iii), we get, ⇒ $3\times 2=k^{\frac{1}{y}}\times k^{\frac{1}{z}}$ ⇒ $6=k^{\frac{1}{y}+\frac{1}{z}}$ Dividing by (i), we get, ⇒ $\frac66=\frac{k^{\frac{1}{y}+\frac{1}{z}}}{k^{\frac{1}{x}}}$ ⇒ $1=k^{\frac{1}{y}+\frac{1}{z}-\frac1x}$ ⇒ $\frac{1}{y}+\frac{1}{z}-\frac1x=0$ Hence, the correct answer is 0.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Option 1: $\frac{1}{3}(x+y+z)$
Option 2: $(x+y+z)$
Option 3: $\frac{1}{4}(x+y+z)$
Option 4: $\frac{1}{2}(x+y+z)$
Question : If $xy+yz+zx=0$, then $(\frac{1}{x^2–yz}+\frac{1}{y^2–zx}+\frac{1}{z^2–xy})$$(x,y,z \neq 0)$ is equal to:
Option 1: $3$
Option 2: $1$
Option 3: $x+y+z$
Option 4: $0$
Question : What is the value of $\frac{4x^2+9y^2+12xy}{144}$?
Option 1: $(\frac{x}{3} + \frac{y}{4})^2$
Option 2: $(\frac{x}{3} + y)^2$
Option 3: $(\frac{x}{4} + \frac{y}{6})^2$
Option 4: $(\frac{x}{6} + \frac{y}{4})^2$
Question : If ${x^2+y^2+z^2=2(x+z-1)}$, then the value of $x^3+y^3+z^3$ is equal to:
Option 1: 6
Option 2: 1
Option 3: 2
Option 4: 8
Question : If $x(x+y+z)=20$, $y(x+y+z)=30$, and $z(x+y+z)=50$, then the value of $2(x+y+z)$ is:
Option 1: 20
Option 2: –10
Option 3: 15
Option 4: 18
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile