Question : If $\sec 3\mathrm{A}=\operatorname{cosec}\left(\mathrm{A}-72^{\circ}\right)$, then what is the value of A ?
Option 1: 34.5°
Option 2: 30°
Option 3: 40.5°
Option 4: 25°
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 40.5°
Solution : $\sec 3A = \operatorname{cosec} (A - 72°)$ ⇒ $\sec 3A = \sec [90° - (A - 72°)]$ ⇒ $\sec 3A = \sec (162° - A)$ ⇒ $3A = 162° - A$ ⇒ $4A = 162°$ ⇒ $A = 40.5°$ Hence, the correct answer is 40.5°.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : What is the value of $\frac{1+\tan A}{\operatorname{cosec} A}+\frac{1+\cot A}{\sec A}$?
Option 1: $2\sec^2A$
Option 2: $\sec \mathrm{A} - \mathrm{cosec A}$
Option 3: $\sec \mathrm{A} + \mathrm{cosec A}$
Option 4: $2 \;\mathrm{cosec^2 A}$
Question : What is the value of $\sqrt{\frac{\operatorname{cosec} A+1}{\operatorname{cosec} A-1}}+\sqrt{\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}}$?
Option 1: $2 \cos A$
Option 2: $\sec A$
Option 3: $2\cos A$
Option 4: $2 \sec A$
Question : If $\cot 3 \mathrm{~A}=\tan \left(\mathrm{A}-36^{\circ}\right)$, then what is the value of $\mathrm{A}$?
Option 1: 33.5 degrees
Option 2: 25 degrees
Option 3: 30 degrees
Option 4: 31.5 degrees
Question : Simplify the given equation: $\frac{\cot^3A–1}{\cot A–1}$
Option 1: $\operatorname{cosec}^2 \mathrm{A}-\cot \mathrm{A}$
Option 2: $\operatorname{cosec}^2 A+\cot A$
Option 3: $\cot ^2 \mathrm{A}+\operatorname{cosec} \mathrm{A}$
Option 4: $\cot ^2 \mathrm{A}-\operatorname{cosec} \mathrm{A}$
Question : The value of $\left(\operatorname{cosec}^2 B-1\right)\left(\sec ^2 B-1\right)$ is:
Option 1: 4
Option 2: 3
Option 3: 2
Option 4: 1
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile