Question : If $\left(z+\frac{1}{z}\right)=4$, then what will be the value of $\frac{1}{2}\left(z^2+\frac{1}{z^2}\right)$?
Option 1: 14
Option 2: 16
Option 3: 7
Option 4: 8
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 7
Solution : $(z+\frac{1}{z})=4$ Squaring both sides, we get: $(z+\frac{1}{z})^2=4^2$ ⇒ $z^2+\frac{1}{z^2}+2×z×\frac{1}{z}=16$ ⇒ $z^2+\frac{1}{z^2}=16-2$ ⇒ $z^2+\frac{1}{z^2}=14$ Thus, $\frac{1}{2}(z^2+\frac{1}{z^2})$ $=\frac{1}{2}×14 = 7$ Hence, the correct answer is 7.
Candidates can download this e-book to give a boost to thier preparation.
Admit Card | Eligibility | Application | Answer Key | Preparation Tips | Result | Cutoff
Question : If $2 x+\frac{2}{x}=5$, then the value of $\left(x^3+\frac{1}{x^3}+2\right)$ will be:
Option 1: $\frac{81}{11}$
Option 2: $\frac{81}{7}$
Option 3: $\frac{71}{8}$
Option 4: $\frac{81}{8}$
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Option 1: $5\frac{1}{9}$
Option 2: $4\frac{5}{6}$
Option 3: $7\frac{1}{9}$
Option 4: $9\frac{1}{9}$
Question : If $\left(4y-\frac{4}{y}\right)=11$, find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Option 1: $7 \frac{9}{16}$
Option 2: $5 \frac{9}{16}$
Option 3: $9 \frac{11}{16}$
Option 4: $9 \frac{9}{16}$
Question : What is the value of $\left(\mathrm{k}+\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}-\frac{1}{\mathrm{k}}\right)\left(\mathrm{k}^2+\frac{1}{\mathrm{k}^2}\right)\left(\mathrm{k}^4+\frac{1}{\mathrm{k}^4}\right)$?
Option 1: $\mathrm{k}^{16}+\frac{1}{\mathrm{k}^{16}}$
Option 2: $\mathrm{k}^{16}-\frac{1}{\mathrm{k}^{16}}$
Option 3: $\mathrm{k}^8-\frac{1}{\mathrm{k}^8}$
Option 4: $\mathrm{k}^8+\frac{1}{\mathrm{k}^8}$
Question : The value of $2 \frac{3}{5} \div\left[2 \frac{1}{3} \div\left\{4 \frac{1}{3}-\left(2 \frac{1}{2}+\frac{2}{3}\right)\right\}\right]$ is equal to:
Option 1: $1 \frac{3}{10}$
Option 2: $2 \frac{7}{10}$
Option 3: $2 \frac{3}{7}$
Option 4: $1 \frac{3}{7}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile