Question : If $\operatorname{cosec} \theta=\frac{17}{15}$, then what will be the value of $\cos \theta?$
Option 1: $\frac{7}{17}$
Option 2: 1
Option 3: $\frac{8}{17}$
Option 4: $\frac{15}{17}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{8}{17}$
Solution : Given, $\operatorname{cosec} \theta=\frac{17}{15}$ ⇒ $\sin \theta =\frac{1}{\operatorname{cosec} \theta}= \frac{15}{17}$ Now, $\cos \theta = \sqrt{1-\sin^2 \theta}$ ⇒ $\cos \theta = \sqrt{1-(\frac{15}{17})^2}$ ⇒ $\cos \theta = \sqrt{\frac{64}{289}}$ ⇒ $\cos \theta = \frac{8}{17}$ Hence, the correct answer is $\frac{8}{17}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Option 1: $\frac{16}{25}$
Option 2: $\frac{40}{41}$
Option 3: $\frac{41}{40}$
Option 4: $\frac{31}{30}$
Question : If $\operatorname{cosec} \theta-\cot \theta=\frac{7}{2}$, then the value of $\operatorname{cosec} \theta$ will be:
Option 1: $\frac{49}{28}$
Option 2: $\frac{21}{28}$
Option 3: $\frac{47}{28}$
Option 4: $\frac{53}{28}$
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Option 1: $\frac{1}{41}$
Option 2: $\frac{43}{29}$
Option 3: $\frac{41}{29}$
Option 4: $\frac{1}{43}$
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Option 1: $2 \sec \theta$
Option 2: $2 \operatorname{cosec} \theta$
Option 3: $2 \cot \theta$
Option 4: $\operatorname{cosec} \theta+\cot \theta$
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Option 1: $\frac{\sqrt{15}-1}{8}$
Option 2: $\frac{\sqrt{15}-1}{4}$
Option 3: $\frac{\sqrt{15}+1}{4}$
Option 4: $\frac{\sqrt{15}-1}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile