Question : If $(\cos q+\sin q)=\frac{31}{25}$, then what will be the value of $\cos^2 q$?
Option 1: $\frac{522}{625}$
Option 2: $\frac{512}{625}$
Option 3: $\frac{513}{625}$
Option 4: $\frac{576}{625}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{576}{625}$
Solution : \(\cos q + \sin q = \frac{31}{25}\) ____(i) Squaring both sides, we get, $⇒(\cos q + \sin q)^2 = \left(\frac{31}{25}\right)^2$ $⇒\cos^2 q + \sin^2 q + 2\cos q \sin q = \left(\frac{31}{25}\right)^2$ $⇒1 + 2\cos q \sin q = \left(\frac{31}{25}\right)^2$ $⇒2\cos q \sin q = \frac{333}{625}$ Also, $(\cos q - \sin q)^2 =1 - 2\cos q \sin q$ $⇒(\cos q - \sin q)^2 =1 - \frac{333}{625}=\frac{289}{625}$ $⇒(\cos q - \sin q) =\frac{17}{25}$ ____(ii) Adding equations (i) and (ii), we get, $⇒2\cos q=\frac{48}{25}$ $⇒\cos q=\frac{24}{25}$ $\therefore\cos ^2q=(\frac{24}{25})^2=\frac{576}{625}$ Hence, the correct answer is $\frac{576}{625}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan A=\frac{3}{8}$, then the value of $\frac{3 \sin A+2 \cos A}{3 \sin A-2 \cos A}$ is:
Option 1: $-\frac{13}{25}$
Option 2: $-\frac{25}{7}$
Option 3: $\frac{25}{8}$
Option 4: $\frac{13}{21}$
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Option 1: $1$
Option 2: $\frac{1}{2}$
Option 3: $\frac{3}2$
Option 4: $2$
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Option 1: $\frac{5}{12}$
Option 2: $\frac{12}{13}$
Option 3: $\frac{11}{12}$
Option 4: $\frac{5}{13}$
Question : If $\sin t+\cos t=\frac{4}{5}$, then find $\sin t.\cos t$.
Option 1: $\frac{9}{50}$
Option 2: $-\frac{9}{50}$
Option 3: $\frac{9}{25}$
Option 4: $-\frac{9}{25}$
Question : If $2\cot x=5$, then what is $\frac{2 \cos x-\sin x}{2 \cos x+\sin x}$ equal to?
Option 1: $\frac{3}{4}$
Option 2: $\frac{1}{3}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{2}{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile