Question : If $A =(\frac{1}{0.4})+(\frac{1}{0.04})+(\frac{1}{0.004})+....$ upto 8 terms, then what is the value of $A$?
Option 1: 27272727.5
Option 2: 25252525.5
Option 3: 27777777.5
Option 4: 25555555.5
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 27777777.5
Solution : Given: $ A =(\frac{1}{0.4})+(\frac{1}{0.04})+(\frac{1}{0.004})+....$ upto 8 terms. This expression can be written as: $⇒ A =(\frac{10}{4})+(\frac{100}{4})+(\frac{1000}{4})+(\frac{10000}{4})+(\frac{100000}{4})+(\frac{1000000}{4})(\frac{10000000}{4})+(\frac{100000000}{4})$ Using the formula, $S_n = \frac{a(r^n-1)}{r-1}$, where $a$ = first term, $r$ = common ratio, $n$ = number of terms $10 + 100 + 1000+ .............+ 100000000 = \frac{10(10^8-1)}{10-1}=111111110$ $⇒ A=(\frac{111111110}{4})$ $\therefore A = 27777777.5$ Hence, the correct answer is 27777777.5.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2x+\frac{2}{x}=3$, then the value of $x^{3}+\frac{1}{x^{3}}+2$ is:
Option 1: $\frac{3}{4}$
Option 2: $\frac{4}{5}$
Option 3: $\frac{5}{8}$
Option 4: $\frac{7}{8}$
Question : If $\frac{5x}{2}-\frac{[7(6x-\frac{3}{2})]}{4}=\frac{5}{8}$, then what is the value of $x$?
Option 1: $\frac{1}{4}$
Option 2: $-\frac{1}{4}$
Option 3: $4$
Option 4: $–4$
Question : If $x=\frac{3}{2}$, then the value of $27x^{3}-54x^{2}+36x-11$ is:
Option 1: $11\frac{3}{8}$
Option 2: $11\frac{5}{8}$
Option 3: $12\frac{3}{8}$
Option 4: $12\frac{5}{8}$
Question : If $\tan A=\frac{3}{8}$, then the value of $\frac{3 \sin A+2 \cos A}{3 \sin A-2 \cos A}$ is:
Option 1: $-\frac{13}{25}$
Option 2: $-\frac{25}{7}$
Option 3: $\frac{25}{8}$
Option 4: $\frac{13}{21}$
Question : The value of $3 \frac{1}{5} \div 4 \frac{1}{2}$ of $5 \frac{1}{3}+\frac{1}{8} \div \frac{1}{2}$ of $\frac{1}{4}-\frac{1}{4}\left(\frac{1}{2} \div \frac{1}{8} \times \frac{1}{4}\right)$ is:
Option 1: $\frac{13}{15}$
Option 2: $\frac{7}{8}$
Option 3: $\frac{3}{4}$
Option 4: $\frac{53}{60}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile