Question : If $2x+\frac{1}{2x}=2,$ what is the value of $\sqrt{2\left (\frac{1}{x}\right)^{4}+\left (\frac{1}{x}\right)^{5}}\; ?$
Option 1: 1
Option 2: 2
Option 3: 4
Option 4: 8
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 8
Solution : Given: $2x+\frac{1}{2x}=2$ $⇒4x^{2}-4x+1=0$ $⇒\left (2x-1 \right)^{2}=0$ $⇒x=\frac{1}{2}$ So, $\sqrt{2\left (\frac{1}{x}\right)^{4}+\left (\frac{1}{x}\right)^{5}}\;=\sqrt{2\left (2\right)^{4}+\left (2\right )^{5}}\;=\sqrt{32+32}\;=8$ Hence, the correct answer is 8.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Option 1: $3\sqrt{5}$
Option 2: $3\sqrt{5}-7$
Option 3: $3\sqrt{5}+7$
Option 4: $8$
Question : If $\left(x+\frac{1}{x}\right)=\sqrt{6}$ and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)$?
Option 1: $120\sqrt{3}$
Option 2: $128\sqrt{3}$
Option 3: $112\sqrt{3}$
Option 4: $108\sqrt{3}$
Question : If $\left(x+\frac{1}{x}\right)=5$, and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)?$
Option 1: $60605 \sqrt{21}$
Option 2: $60615 \sqrt{21}$
Option 3: $60705 \sqrt{21}$
Option 4: $60725 \sqrt{21}$
Question : If $x-\frac{1}{x}=1$, then what is the value of $\left (\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x^{2}+1}-\frac{1}{x^{2}-1} \right)\;$?
Option 1: $\pm \sqrt{5}$
Option 2: $\frac{2}{5}$
Option 3: $\pm\frac{2}{\sqrt{5}}$
Option 4: $\pm\frac{\sqrt{5}}{2}$
Question : If $\left(x^2 - \frac{1}{x^2}\right) = 4 \sqrt{6}$ and $x>1$, what is the value of $\left(x^3 - \frac{1}{x^3}\right)?$
Option 1: $20 \sqrt{2}$
Option 2: $24 \sqrt{2}$
Option 3: $18 \sqrt{2}$
Option 4: $22 \sqrt{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile