Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Option 1: $2$
Option 2: $1$
Option 3: $0$
Option 4: $\frac{1}{\sqrt{2}}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2$
Solution : Given: $\cos x+\sin x=\sqrt{2} \cos x$ To find, $(\cos x-\sin x)^2+(\cos x+\sin x)^2$ $=\cos^2 x + \sin^2 x - 2\sin x \cos x + \cos^2 x + \sin^2 x + 2\sin x \cos x $ $=1 - 2 \sin x \cos x + 1 + 2\sin x \cos x = 1 + 1 = 2$ Hence, the correct answer is $2$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : In $\triangle{XYZ}$, right-angled at $Y$, if $\sin X = \frac{1}{2}$, find the value of $\cos X \cos Z + \sin X \sin Z$.
Option 1: $\frac{\sqrt{3}}{2}$
Option 2: $\frac{\sqrt{3}}{4}$
Option 3: $\frac{2}{\sqrt{3}}$
Option 4: $\sqrt{3}$
Question : If $\tan \frac{A}{2}=x$, then find $x$.
Option 1: $\frac{\sqrt{1+\cos A}}{\sqrt{1-\cos A}}$
Option 2: $\frac{\sqrt{1-\sin A}}{\sqrt{1+\cos A}}$
Option 3: $\frac{\sqrt{1-\cos A}}{\sqrt{1+\cos A}}$
Option 4: $\frac{\sqrt{\cos A-1}}{\sqrt{1+\cos A}}$
Question : Using $\cos (A+B)=\cos A \cos B-\sin A \sin B$, find the value of $\cos 75^\circ$.
Option 1: $\frac{\sqrt{5}-1}{4}$
Option 2: $\frac{\sqrt{5}+1}{4}$
Option 3: $\frac{\sqrt{6}-\sqrt{2}}{4}$
Option 4: $\frac{\sqrt{6}+\sqrt{2}}{4}$
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Option 1: $1$
Option 2: $\frac{1}{2}$
Option 3: $\frac{3}2$
Option 4: $2$
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $\frac{1}{1-\sqrt{3}}$
Option 3: $\frac{\sqrt{3}}{2}$
Option 4: $\frac{2}{\sqrt{3}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile