Question : In a class, the average height of all students is $a$ cm. Among them, the average height of 10 students is $b$ cm, and the average height of the remaining students is $c$ cm. Find the number of students in the class. (Here $a>c$ and $b>c$)
Option 1: $\frac{\left ( a\left ( b-c \right ) \right )}{\left ( a-c \right )}$
Option 2: $\frac{\left ( b-c \right )}{\left ( a-c \right )}$
Option 3: $\frac{\left ( b-c \right )}{10\left ( a-c \right )}$
Option 4: $\frac{10\left ( b-c \right )}{\left ( a-c \right )}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{10\left ( b-c \right )}{\left ( a-c \right )}$
Solution : Let the total number of students in the class be $x$. Given, $ax=10×b + (x-10)c$ ⇒ $ax=10b + xc-10c$ ⇒ $ax-cx= 10b -10c$ ⇒ $(a-c)x= 10(b -c)$ $\therefore x=\frac{10\left ( b-c \right )}{\left ( a-c \right )}$ Hence, the correct answer is $\frac{10\left ( b-c \right )}{\left ( a-c \right )}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : The volume of a hemisphere is $2425 \frac{1}{2} \mathrm{~cm}^3$. Find its radius. $\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
Option 1: 12 cm
Option 2: 10 cm
Option 3: 10.5 cm
Option 4: 9.5 cm
Question : The average height of 30 boys out of a class of 50 is 160 cm. If the average height of the remaining boys is 165 cm, the average height of the whole class (in cm) is:
Option 1: 161
Option 2: 162
Option 3: 163
Option 4: 164
Question : The sum of three fractions A, B and C, A > B > C, is $\frac{121}{60}$. When C is divided by B, the resulting fraction is $\frac{9}{10}$, which exceeds A by $\frac{3}{20}$. What is the difference between B and C?
Option 1: $\frac{1}{15}$
Option 2: $\frac{1}{10}$
Option 3: $\frac{3}{10}$
Option 4: $\frac{7}{15}$
Question : If $M =\left ( \frac{3}{7} \right ) ÷ \left ( \frac{6}{5} \right ) ×\left ( \frac{2}{3} \right ) + \left ( \frac{1}{5} \right ) ×\left ( \frac{3}{2} \right )$ and $N = \left ( \frac{2}{5} \right ) × \left ( \frac{5}{6} \right ) ÷ \left ( \frac{1}{3} \right ) + \left ( \frac{3}{5} \right ) × \left ( \frac{2}{3} \right ) ÷ \left ( \frac{3}{5} \right )$, then what is the value of $\frac{M}{N}$?
Option 1: $\frac{207}{560}$
Option 2: $\frac{339}{1120}$
Option 3: $\frac{113}{350}$
Option 4: $\frac{69}{175}$
Question : If $\left (a+\frac{1}{b} \right)=1$ and $\left (b+\frac{1}{c} \right)=1$, the value of $\left (c+\frac{1}{a} \right)$ is:
Option 1: 0
Option 2: 1
Option 3: – 1
Option 4: 2
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile