Question : In a triangle MNO, XA, XB, and XC are perpendicular bisectors on sides MN, ON, and OM respectively intersecting each other at X. If $\angle \mathrm{NMO}=55°$, then what is the value of $\angle \mathrm{NXO}$?
Option 1: 130°
Option 2: 110°
Option 3: 95°
Option 4: 125°
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 110°
Solution :
$\angle NXO$ is the angle made at the circumcenter of the triangle. ⇒ $\angle NXO = 2 × ∠NMO$ ⇒ $∠NXO = 2 × 55°$ ⇒ $∠NXO = 110°$ Hence, the correct answer is 110°.
Candidates can download this e-book to give a boost to thier preparation.
Admit Card | Eligibility | Application | Answer Key | Preparation Tips | Result | Cutoff
Question : In $\triangle \mathrm{PQR}, \angle \mathrm{P}=46^{\circ}$ and $\angle \mathrm{R}=64^{\circ}$.If $\triangle \mathrm{PQR}$ is similar to $\triangle \mathrm{ABC}$ and in correspondence, then what is the value of $\angle \mathrm{B}$?
Option 1: 70°
Option 2: 90°
Option 3: 100°
Option 4: 110°
Question : In $\triangle ABC$, the internal bisectors of $\angle ABC$ and $\angle ACB$ meet at $I$ and $\angle BAC=50°$. The measure of $\angle BIC$ is:
Option 1: $105°$
Option 2: $115°$
Option 3: $125°$
Option 4: $130°$
Question : It is given that $\triangle \mathrm{PQR} \cong \triangle \mathrm{MNY}$ and $PQ=8\ \mathrm{cm}, \angle Q = 55°$ and $\angle P = 72°$. Which of the following is true?
Option 1: $\mathrm{NY}=8 \mathrm{~cm}, \angle \mathrm{Y}=72^{\circ}$
Option 2: $\mathrm{NM}=8 \mathrm{~cm}, \angle \mathrm{M}=53^{\circ}$
Option 3: $\mathrm{NM}=8 \mathrm{~cm}, \angle \mathrm{Y}=53^{\circ}$
Option 4: $\mathrm{NY}=8 \mathrm{~cm}, \angle \mathrm{N}=55^{\circ}$
Question : O is the incentre of the $\triangle \mathrm{PQR}$. If $\angle \mathrm{POR}=120°$, then what is the $\triangle \mathrm{PQR}$?
Option 1: 45°
Option 2: 60°
Option 3: 55°
Option 4: 48°
Question : In $\triangle \mathrm{STU}, \mathrm{SX}$ is the median on $\mathrm{TU}$. If $\mathrm{SX}=\mathrm{TX}$, then what is the value of $\angle \mathrm{TSU}$?
Option 1: 75°
Option 2: 45°
Option 3: 60°
Option 4: 90°
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile