Question : In $\triangle$ABC and $\triangle$DEF, $\angle$A = $55^{\circ}$, AB = DE, AC = DF, $\angle$E = $85^{\circ}$ and $\angle$F = $40^{\circ}$. By which property are $\triangle$ABC and $\triangle$DEF congruent?
Option 1: SAS property
Option 2: ASA property
Option 3: RHS property
Option 4: SSS property
New: SSC CGL 2025 Tier-1 Result
Latest: SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: SAS property
Solution : In $\triangle$ DEF, $\angle$ D + $\angle$ E + $\angle$ F = $180^{\circ}$ ⇒ $\angle$ D + $85^{\circ}$ + $40^{\circ}$ = $180^{\circ}$ ⇒ $\angle$ D = $180^{\circ} - 85^{\circ} - 40^{\circ}$ = $55^{\circ}$ In $\triangle$ ABC and $\triangle$ DEF, AB = DE AC = DF $\angle$ A = $\angle$ D = $55^{\circ}$ By the SAS property, $\triangle$ABC and $\triangle$DEF are congruent. Hence, the correct answer is SAS property.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In $\triangle$ABC and $\triangle$PQR, AB = PQ and $\angle$B = $\angle$Q. The two triangles are congruent by SAS criteria if:
Option 1: BC = QR
Option 2: AC = PR
Option 3: AC = QR
Option 4: BC = PQ
Question : ABC is an isosceles triangle having AB = AC and $\angle$A = 40$^\circ$. Bisector PO and OQ of the exterior angle $\angle$ ABD and $\angle$ ACE formed by producing BC on both sides, meet at O, then the value of $\angle$BOC is:
Option 1: 70$^\circ$
Option 2: 110$^\circ$
Option 3: 80$^\circ$
Option 4: 55$^\circ$
Question : If it is given that for two right-angled triangles $\triangle$ABC and $\triangle$DFE, $\angle$A = 25°, $\angle$E = 25°, $\angle$B = $\angle$F = 90°, and AC = ED, then which one of the following is TRUE?
Option 1: $\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$
Option 2: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DFE}$
Option 3: $\triangle \mathrm{ABC} \cong \triangle \mathrm{EFD}$
Option 4: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$
Question : I is the incenter of a triangle ABC. If $\angle$ ABC = 65$^\circ$ and $\angle$ ACB = 55$^\circ$, then the value of $\angle$ BIC is:
Option 1: 130$^\circ$
Option 2: 120$^\circ$
Option 3: 140$^\circ$
Option 4: 110$^\circ$
Question : If in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar when:
Option 1: $\angle B=\angle D$
Option 2: $\angle A=\angle D$
Option 3: $\angle A=\angle F$
Option 4: $\angle B=\angle E$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile