Question : In $\triangle$ABC, D and E are two points on the sides AB and AC, respectively, so that DE $\parallel$ BC and $\frac{AD}{BD}=\frac{2}{3}$. Then $\frac{\text{Area of trapezium DECB}}{\text{Area of $\triangle$ABC}}$ is equal to:
Option 1: $\frac{5}{9}$
Option 2: $\frac{21}{25}$
Option 3: $1\frac{4}{5}$
Option 4: $5\frac{1}{4}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{21}{25}$
Solution : Given: $\frac{AD}{BD}=\frac{2}{3}$ and DE $\parallel$ BC So, $\triangle$ABC and $\triangle$ADE are similar. ⇒ $\frac{\text{Area of $\triangle$ABC}}{\text{Area of $\triangle$ADE}}=\frac{(AB)^2}{(AD)^2}$ ⇒ $\frac{\text{Area of $\triangle$ABC}}{\text{Area of $\triangle$ADE}}=\frac{(2+3)^2}{(2)^2}=\frac{25}{4}$ Let the area of $\triangle$ABC and $\triangle$ADE be 25k and 4k, respectively. So, the area of trapezium DECB = (Area of $\triangle$ABC) – (Area of $\triangle$ADE) = 25k – 4k = 21k Therefore, $\frac{\text{Area of trapezium DECB}}{\text{Area of $\triangle$ABC}}$ = $\frac{21k}{25k}$ = $\frac{21}{25}$ Hence, the correct answer is $\frac{21}{25}$.
Candidates can download this e-book to give a boost to thier preparation.
Answer Key | Eligibility | Application | Admit Card | Preparation Tips | Result | Cutoff
Question : In $\triangle ABC$, $D$ and $E$ are the points of sides $AB$ and $BC$ respectively such that $DE \parallel AC$ and $AD : DB = 3 : 2$. The ratio of the area of trapezium $ACED$ to that of $\triangle DBE$ is:
Option 1: $4:15$
Option 2: $15:4$
Option 3: $4:21$
Option 4: $21:4$
Question : If in a $\triangle$ABC, D and E are on the sides AB and AC, such that, DE is parallel to BC and $\frac{AD}{BD}$ = $\frac{3}{5}$. If AC = 4 cm, then AE is:
Option 1: 1.5 cm
Option 2: 2.0 cm
Option 3: 1.8 cm
Option 4: 2.4 cm
Question : In triangle RST, M and N are two points on RS and RT such that MN is parallel to the base ST of the triangle RST. If $\text{RM}=\frac{1}{3} \text{MS}$ and $\text{ST}=5.6 \text{ cm}$, what is the ratio of $\frac{\text { Area of triangle RMN}}{\text {Area of trapezium MNST}}$?
Option 1: $\frac{14}{15}$
Option 2: $\frac{15}{16}$
Option 3: $\frac{1}{15}$
Option 4: $\frac{1}{16}$
Question : The sides of similar triangle $\triangle ABC$ and $\triangle DEF$ are in the ratio of $\frac{\sqrt{3}}{\sqrt{5}}$. If the area of $\triangle ABC$ is $90 \text{ cm}^2$, then the area of $\triangle DFF\left(\right.$ in $\left.\text{cm}^2\right)$ is:
Option 1: 150
Option 2: 152
Option 3: 154
Option 4: 156
Question : ABCD is a square. Draw a triangle QBC on side BC considering BC as a base and draw a triangle PAC on AC as its base such that $\Delta$QBC$\sim\Delta$PAC. Then, $\frac{\text{Area of $\Delta$QBC}}{\text{Area of $\Delta$PAC}}$ is equal to:
Option 1: $\frac{1}{2}$
Option 2: $\frac{2}{1}$
Option 3: $\frac{1}{3}$
Option 4: $\frac{2}{3}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile