Question : In $\triangle$ABC, the bisector of $\angle$BAC intersects BC at D and the circumcircle of $\triangle$ABC at E. If AB : AD = 3 : 5, then AE : AC is:
Option 1: 5 : 3
Option 2: 3 : 2
Option 3: 2 : 3
Option 4: 3 : 5
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 3 : 5
Solution : Given: AB : AD = 3 : 5 AE is bisector of $\angle$BAC. So, $\angle$BAD = $\angle$CAE $\angle$AEC = $\angle$ABC [As AC is a common segment] $\therefore \triangle$ABD $\sim \triangle$AEC So, $\frac{AB}{AE}=\frac{AD}{AC}$ ⇒ $\frac{AB}{AD}=\frac{AE}{AC}$ $\therefore \frac{AE}{AC}=\frac{3}{5}$ Hence, the correct answer is 3 : 5.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : In triangle ABC, the bisector of angle BAC cuts the side BC at D. If AB = 10 cm, and AC = 14 cm then what is BD : BC ?
Option 2: 7 : 5
Option 3: 5 : 2
Option 4: 5 : 7
Question : In triangle ABC, the bisector of angle BAC cuts the side BC at D. If AB = 10 cm, and AC = 14 cm, then what is BD : DC?
Option 1: 10 : 7
Option 2: 5 : 7
Option 3: 7 : 5
Option 4: 7 : 10
Question : In a triangle ABC a straight line parallel to BC intersects AB and AC at D and E, respectively. If AB = 2AD, then DE : BC is:
Option 1: 2 : 3
Option 2: 2 : 1
Option 3: 1 : 2
Option 4: 1 : 3
Question : ABC is a right angle triangle and $\angle ABC = 90^{\circ}$. BD is perpendicular on the side AC. What is the value of $(BD)^2$?
Option 1: $AD\times DC$
Option 2: $BC\times AB$
Option 3: $BC\times CD$
Option 4: $AD\times AC$
Question : In $\triangle$ABC, $\angle$B = 35°, $\angle$C = 65° and the bisector of $\angle$BAC meets BC in D. Then $\angle$ADB is:
Option 1: 40°
Option 2: 75°
Option 3: 90°
Option 4: 105°
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile