Question : In $\triangle XYZ$, points P, Q, and R are points on the sides XY, YZ, and XZ respectively $\angle YXZ = 50^\circ$, XR = PR, ZR = QR, and $\angle RQZ = 80^\circ$. What is the value of $\angle PRQ$?
Option 1: $80^\circ$
Option 2: $90^\circ$
Option 3: $75^\circ$
Option 4: $60^\circ$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $80^\circ$
Solution : In $\triangle XPR$ $\angle PXR = 50^\circ$ Since XR = PR, the triangle is isosceles. $\angle$XPR = $\angle$PXR = 50$^\circ$ ⇒ $\angle XRP = 180^\circ-50^\circ-50^\circ= 80^\circ$ Since ZR = QR, the triangle is isosceles. Similarly, $\angle RQZ = \angle RZQ = 80^\circ$ ⇒ $\angle QRZ = 180^\circ- 80^\circ- 80^\circ = 20^\circ$ Now, $\angle PRQ = 180^\circ - \angle RQZ - \angle XPR$ $⇒\angle PRQ = 180^\circ-20^\circ- 80^\circ=80^\circ$ Hence, the correct answer is $80^\circ$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : If in $\triangle PQR$ and $\triangle DEF, \angle P=52^{\circ}, \angle Q=74^{\circ}, \angle R=54^{\circ}, \angle D=54^{\circ}, \angle E=74^{\circ}$ and $\angle F=52^{\circ}$, then which of the following is correct?
Option 1: $\triangle \mathrm{PQR} \sim \triangle \mathrm{FED}$
Option 2: $\triangle \mathrm{RQP} \sim \triangle \mathrm{FED}$
Option 3: $\triangle \mathrm{PRQ} \sim \Delta \mathrm{FED}$
Option 4: $\triangle \mathrm{PQR} \sim \triangle \mathrm{DEF}$
Question : If $\triangle{PQR} \cong \triangle{STR}, \angle {Q}=50^{\circ}$ and $\angle {P}=70^{\circ}$ and ${PQ}$ is $8 {~cm}$. Which of the following options is NOT correct?
Option 1: $\angle {TSR}=80^{\circ}$
Option 2: $\angle {PRT}=60^{\circ}$
Option 3: ${PR}={RS}$
Option 4: ${TR}={RQ}$
Question : In $\triangle \mathrm{XYZ}$, I is the incentre of the $\triangle \mathrm{XYZ}$. If $\angle \mathrm{XYZ}=40$$^\circ$, then what is the value of $\angle \mathrm{XIZ}$?
Option 1: 110$^\circ$
Option 2: 130$^\circ$
Option 3: 115$^\circ$
Option 4: 120$^\circ$
Question : $\triangle PQR$ and $\triangle SQR$ are both isosceles triangles on a common base $QR$ such that $P$ and $S$ lie on the same side of $QR$. If $\angle QSR=60^{\circ}$ and $\angle QPR=100^{\circ}$, then find $\angle SRP$.
Option 1: $80^{\circ}$
Option 2: $60^{\circ}$
Option 3: $100^{\circ}$
Option 4: $20^{\circ}$
Question : In $\triangle {PQR}, {PN}$ is the median on ${QR}$. If ${PN}={QN}$, then what is the value of $\angle {QPR}$?
Option 1: $90^\circ$
Option 2: $80^\circ$
Option 3: $60^\circ$
Option 4: $75^\circ$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile