24 Views

Question : In the given figure, $PQRS$ is a quadrilateral. If $QR = 18$ cm and $PS = 9$ cm, then, what is the area (in cm2) of quadrilateral $PQRS$?

Option 1: $\frac{(64\sqrt{3})}{3}$

Option 2: $\frac{(177\sqrt{3})}{2}$

Option 3: $\frac{(135\sqrt{3})}{2}$

Option 4: $\frac{(98\sqrt{3})}{3}$


Team Careers360 19th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: $\frac{(135\sqrt{3})}{2}$


Solution :

Given: $PQRS$ is a quadrilateral, $QR = 18$ cm and $PS = 9$ cm.
Construction: Extend the lines $QP$ and $RS$ as they meet at $T$ and form $\triangle QRT$ an equilateral triangle.
Take the angles as shown in the figure.
The area of an equilateral $\triangle QRT$ = $\frac{\sqrt{3}}{4}×(18)^2=81\sqrt{3}$ cm2 
And in the $\triangle TSP$ is a right-angled triangle.
$\tan 30^{\circ}=\frac{TS}{PS}=\frac{TS}{9}$
⇒ $\frac{1}{\sqrt3}=\frac{TS}{9}$
⇒ $TS=\frac{9}{\sqrt3}$
The area of right-angled $\triangle TSP$ = $\frac{1}{2}×TS×PS$
The area of right-angled triangle = $\frac{1}{2}×\frac{9}{\sqrt3}×9=\frac{27\sqrt3}{2}$ cm2 
The required area of quadrilateral $PQRS$ = The area of an equilateral $\triangle QRT$ – The area of right-angled $\triangle TSP$
The required area of quadrilateral $PQRS$ = $81\sqrt{3} $ – $\frac{27\sqrt3}{2}$ = $\frac{162\sqrt{3}–27\sqrt3}{2}$ = $\frac{135\sqrt{3}}{2}$ cm2
Hence, the correct answer is $\frac{135\sqrt{3}}{2}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books