Question : $\triangle \mathrm{EFG}$ is a right angled triangle. $\angle \mathrm{F}=90°$, $\mathrm{EF}=10 \mathrm{~cm}$ and $\mathrm{FG}=15 \mathrm{~cm}$. What is the value of cosec $\mathrm{G}$?
Option 1: $\frac{\sqrt{13}}{2}$
Option 2: $\frac{2}{\sqrt{3}}$
Option 3: $\frac{\sqrt{13}}{10}$
Option 4: $\frac{10}{\sqrt{3}}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{13}}{2}$
Solution : $\angle$F = 90°, EF = 10 cm, FG = 15 cm By Pythagoras theorem, Hypotenuse2 = Base2 + Perpendicular2 EG2 = EF2 + FG2 ⇒ EG2 = 102 + 152 ⇒ EG2 = 100 + 225 ⇒ EG = $\sqrt{325}$ cm cosec $\theta$ = $\frac{\text{Hypotenuse}}{\text{Perpendicular}}$ ⇒ cosec G = $\frac{\sqrt{325}}{10} = \frac{\sqrt{25 \times 13}}{10} = \frac{5\sqrt{13}}{10}$ ⇒ $\frac{\sqrt{13}}{2}$ Hence, the correct answer is $\frac{\sqrt{13}}{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : $\triangle{ABC}$ is a right angled triangle. $\angle \mathrm{C}=90°$, AB = 25 cm and BC = 20 cm. What is the value of $\mathrm{sec}\; A$?
Option 1: $\frac{5}{3}$
Option 2: $\frac{4}{5}$
Option 3: $\frac{4}{3}$
Option 4: $\frac{5}{4}$
Question : $\triangle\mathrm{ABC}$ is a right angled triangle. $\angle \mathrm{A}=90°$, $AB = 4$ cm, and $BC = 5$ cm. What is the value of $\cos B + \cot C$?
Option 1: $\frac{17}{20}$
Option 2: $\frac{29}{20}$
Option 3: $\frac{23}{20}$
Option 4: $\frac{31}{20}$
Question : The sides of a triangle are 9 cm, 6 cm, and 5 cm. What is the value of the circumradius of this triangle?
Option 1: $\frac{9 \sqrt{2}}{2} \mathrm{~cm}$
Option 2: $\frac{9 \sqrt{3}}{5} \mathrm{~cm}$
Option 3: $\frac{9 \sqrt{3}}{4} \mathrm{~cm}$
Option 4: $\frac{27 \sqrt{2}}{8} \mathrm{~cm}$
Question : $\triangle PQR$ is a right-angled triangle. $\angle Q = 90^\circ$, PQ = 12 cm, and QR = 5 cm. What is the value of $\operatorname{cosec}P+\sec R$?
Option 1: $\frac{26}{5}$
Option 2: $\frac{13}{5}$
Option 3: $\frac{18}{5}$
Option 4: $\frac{14}{5}$
Question : Let ABC be a right-angled triangle where $\angle \mathrm{A}=90^{\circ}$ and $\angle \mathrm{C}=45^{\circ}$. Find the value of $\sec \mathrm{C}+\sin \mathrm{C} \sec \mathrm{C}$.
Option 1: $1$
Option 2: $1-\sqrt{2}$
Option 3: $1+\sqrt{2}$
Option 4: $\sqrt{2}-1$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile