Question : It is given that ABC $\cong$ PQR, AB = 5 cm, $\angle$B = $40^{\circ}$, and $\angle$A = $80^{\circ}$. Which of the following options is true?
Option 1: PQ = 5 cm and $\angle$R = $60^{\circ}$
Option 2: QR = 5 cm and $\angle$R = $60^{\circ}$
Option 3: QR = 5 cm and $\angle$Q = $60^{\circ}$
Option 4: PQ = 5 cm and $\angle$P = $60^{\circ}$
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: PQ = 5 cm and $\angle$R = $60^{\circ}$
Solution : $\angle$C = $180^{\circ}-40^{\circ}-80^{\circ}$ = $60^{\circ}$ Since ABC $\cong$ PQR, AB = PQ = 5 cm $\angle$A = $\angle$P = $80^{\circ}$ $\angle$B = $\angle$Q = $40^{\circ}$ $\angle$C = $\angle$R = $60^{\circ}$ Hence, the correct answer is PQ = 5 cm and $\angle$R = $60^{\circ}$.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}, \mathrm{BC}=6 \mathrm{~cm}$, and $\angle \mathrm{A}=75^{\circ}$, then which one of the following is true?
Option 1: $\mathrm{QR}=6$ cm, $\angle \mathrm{R}=75^{\circ}$
Option 2: $\mathrm{QR}=6$ cm, $\angle \mathrm{Q}=75^{\circ}$
Option 3: $\mathrm{QR}=6$ cm, $\angle \mathrm{P}=75^{\circ}$
Option 4: $\mathrm{PR}=6$ cm, $\angle \mathrm{P}=75^{\circ}$
Question : In $\triangle P Q R$, $\angle Q=90^{\circ}$, $PQ=8$ cm and $\angle P R Q=45^{\circ}$ Find the length of $QR$.
Option 1: 6 cm
Option 2: 3 cm
Option 3: 5 cm
Option 4: 8 cm
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Option 1: $\triangle ABC \cong \triangle PQR$
Option 2: $ar(\triangle ABC)\neq ar(\triangle PQR)$
Option 3: $ar(\triangle ABC) \leq ar(\triangle PQR)$
Option 4: $ar(\triangle ABC)=ar(\triangle PQR)$
Question : $\triangle ABC$ and $\triangle PQR$ are two triangles. AB = PQ = 6 cm, BC = QR =10 cm, and AC = PR = 8 cm. If $\angle ABC = x$, then what is the value of $\angle PRQ$?
Option 1: $(180 ^{\circ}–x)$
Option 2: $x$
Option 3: $(90 ^{\circ}–x)$
Option 4: $(90 ^{\circ}+x)$
Question : $\triangle PQR$ is right-angled at $Q$. The length of $PQ$ is 5 cm and $\angle P R Q=30^{\circ}$. Determine the length of the side $QR$.
Option 1: $5 \sqrt{3}~cm$
Option 2: $3 \sqrt{3}~cm$
Option 3: $\frac{1}{\sqrt{3}}~cm$
Option 4: $\frac{5}{\sqrt{3}}~cm$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile