Hello,
Since it's the equation of an Ellipse, So you can assume any parametric coordinate on Ellipse and use the distance formula between the origin and the parametric point. Now differentiate the distance formula expression and equate it to zero to minimize the expression.
Hope this Helps,
Regards,
Arin.
Question : If $x=a^{\frac{1}{2}}+a^{-\frac{1}{2}}$, $y=a^{\frac{1}{2}}- a^{-\frac{1}{2}}$, then the value of $(x^{4}-x^{2}y^{2}-1)+(y^{4}-x^{2}y^{2}+1)$ is:
Option 1: 16
Option 2: 13
Option 3: 12
Option 4: 14
Question : The simplified value of $\small \left (1-\frac{2xy}{x^{2}+y^{2}}\right )\div\left (\frac{x^{3}-y^{3}}{x-y}-3xy\right)$ is:
Option 1: $\frac{1}{x^{2}-y^{3}}$
Option 2: $\frac{1}{x^{2}+y^{2}}$
Option 3: $\frac{1}{x-y}$
Option 4: $\frac{1}{x+y}$
Question : What is the simplified value of $\frac{(x+y+z)(x y+y z+z x)–x y z}{(x+y)(y+z)(z+x)}$?
Option 1: $y$
Option 2: $z$
Option 3: $1$
Option 4: $x$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile