22 Views

Question : Simplify.
$\frac{\sin8\theta \cos\theta - \sin6\theta \cos3\theta}{\cos2\theta \cos\theta - \sin3\theta \sin4\theta}$

Option 1: $\cot \theta$

Option 2: $\cot 2 \theta$

Option 3: $\tan \theta$

Option 4: $\tan 2 \theta$


Team Careers360 12th Jan, 2024
Answer (1)
Team Careers360 23rd Jan, 2024

Correct Answer: $\tan 2 \theta$


Solution : Given:
$\frac{\sin8\theta \cos\theta - \sin6\theta \cos3\theta}{\cos2\theta \cos\theta - \sin3\theta \sin4\theta}$
= $\frac{2\sin8\theta \cos\theta - 2\sin6\theta \cos3\theta}{2\cos2\theta \cos\theta - 2\sin3\theta \sin4\theta}$
= $\frac{\sin(8\theta+\theta)+\sin(8\theta-\theta)-\sin(6\theta+3\theta)-\sin(6\theta-3\theta)}{\cos(2\theta+\theta)+\cos(2\theta-\theta)-\cos(3\theta-4\theta)+\cos(3\theta+4\theta)}$
= $\frac{\sin9\theta + \sin7\theta - \sin9\theta - \sin3\theta}{\cos3\theta + \cos\theta - \cos(-\theta)+cos7\theta}$
= $\frac{\sin7\theta-\sin3\theta}{\cos3\theta + \cos\theta - \cos\theta+cos7\theta}$
= $\frac{\sin7\theta-\sin3\theta}{\cos7\theta+cos3\theta}$
= $\frac{2\cos\frac{7\theta+3\theta}{2}\sin\frac{7\theta-3\theta}{2}}{2\cos\frac{7\theta+3\theta}{2}\cos\frac{7\theta-3\theta}{2}}$
= $\frac{\cos5\theta\sin2\theta}{\cos5\theta\cos2\theta}$
= $\frac{\sin2\theta}{\cos2\theta}$
= $\tan2\theta$
Hence, the correct answer is $\tan2\theta$.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Application Date: 10 Jan, 2026 - 9 Feb, 2026
Application Date: 16 Dec, 2025 - 16 Jan, 2026
Tier II Exam Date: 18 Jan, 2026 - 19 Jan, 2026
Admit Card Date: 27 Dec, 2025 - 20 Jan, 2026

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books