20 Views

Question : Simplify $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$.

Option 1: $1-\tan ^2 \theta$

Option 2: $\tan ^2 \theta-1$

Option 3: $\cot ^2 \theta-1$

Option 4: $1-\cot ^2 \theta$


Team Careers360 25th Jan, 2024
Answer (1)
Team Careers360 27th Jan, 2024

Correct Answer: $\cot ^2 \theta-1$


Solution : $\frac{\cos ^4 \theta-\sin ^4 \theta}{\sin ^2 \theta}$
$= \frac{(\cos^2 \theta - \sin^2 \theta)(\cos^2 \theta + \sin^2 \theta)}{\sin ^2 \theta}$
$=\frac{\cos^2 \theta - \sin^2 \theta}{\sin ^2 \theta}$ [As $\cos^2 \theta + \sin^2 \theta = 1$]
$=\frac{\cos^2 \theta}{\sin ^2 \theta}-\frac{\sin^2 \theta}{\sin^2 \theta}$
$=\cot ^2 \theta-1$
Hence, the correct answer is $\cot ^2 \theta-1$.

Know More About

Related Questions

Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Upcoming Exams

Application Date: 10 Jan, 2026 - 9 Feb, 2026
Application Date: 16 Dec, 2025 - 16 Jan, 2026
Tier II Exam Date: 18 Jan, 2026 - 19 Jan, 2026
Admit Card Date: 27 Dec, 2025 - 20 Jan, 2026

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books