Question : Simplify the following expression. $(a+b+c)^2-(a-b+c)^2+4ac$
Option 1: $4(bc+ac)$
Option 2: $2(ab+bc+ac)$
Option 3: $4(ab+bc+ac)$
Option 4: $4(bc+ab)$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4(ab+bc+ac)$
Solution : Given: $(a+b+c)^2-(a-b+c)^2+4 a c$ $= a^2+b^2+c^2+2ab+2bc+2ca-(a^2+b^2+c^2-2ab-2bc+2ca)+4ac$ $= a^2+b^2+c^2+2ab+2bc+2ca-a^2-b^2-c^2+2ab+2bc-2ca+4ac$ $= 4ab+4bc+4ac$ $= 4(ab+bc+ca)$ Hence, the correct answer is $4(ab+bc+ca)$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : In a $\triangle ABC$, the median AD, BE, and CF meet at G, then which of the following is true?
Option 1: 4(AD + BE + CF) > 3(AB + BC + AC)
Option 2: 2(AD + BE + CF) > (AB + BC + AC)
Option 3: 3(AD + BE + CF) > 4(AB + BC + AC)
Option 4: AB + BC + AC > AD + BE + CF
Question : If $\frac{xy}{x+y}=a$, $\frac{xz}{x+z}=b$ and $\frac{yz}{y+z}=c$, where $a,b,c$ are all non-zero numbers, $x$ equals to:
Option 1: $\frac{2abc}{ab+bc–ac}$
Option 2: $\frac{2abc}{ab+ac–bc}$
Option 3: $\frac{2abc}{ac+bc–ab}$
Option 4: $\frac{2abc}{ab+bc+ac}$
Question : Simplify the following expression: $\frac{\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2}{b^2-c^2}$
Option 1: $3a^2$
Option 2: $4a^2$
Option 3: $5a^2$
Option 4: $2a^2$
Question : Simplify the expression: $(c+d)^2-(c-d)^2$
Option 1: $4cd$
Option 2: $\left(c^2+d^2\right)$
Option 3: $2\left(c^2+d^2\right)$
Option 4: $2cd$
Question : The simplified value of the following is: $\left (\frac{3}{15}a^{5}b^{6}c^{3}\times \frac{5}{9}ab^{5}c^{4} \right )\div \frac{10}{27}a^{2}bc^{3}$.
Option 1: $\frac{9a^{2}bc^{4}}{10}$
Option 2: $\frac{3ab^{4}c^{3}}{10}$
Option 3: $\frac{3a^{4}b^{10}c^{4}}{10}$
Option 4: $\frac{1a^{4}b^{4}c^{10}}{10}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile