Question : Solve the following equation. $\sec ^2 \theta\left(\sqrt{1-\sin ^2 \theta}\right)= $ __________.
Option 1: $\tan \theta$
Option 2: $\operatorname{cosec \theta}$
Option 3: $\sec \theta$
Option 4: $1$
Correct Answer: $\sec \theta$
Solution : The given equation is: We know that $\cos^2 \theta = 1-\sin^2 \theta $. $\sec ^2 \theta\left(\sqrt{1-\sin ^2 \theta}\right)$ $=\sec ^2 \theta\left(\sqrt{\cos^2 \theta}\right)$ $=\sec ^2 \theta\cos \theta$ $=\sec \theta $ Hence, the correct answer is $\sec \theta $.
Application | Eligibility | Selection Process | Result | Cutoff | Admit Card | Preparation Tips
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Option 1: $\frac{4+\sqrt{2}}{2}$
Option 2: $\frac{2+\sqrt{3}}{2}$
Option 3: $\frac{4+\sqrt{3}}{2}$
Option 4: $\frac{2+\sqrt{2}}{2}$
Question : The value of $\tan ^2 48^{\circ}-\operatorname{cosec}^2 42^{\circ}+\operatorname{cosec}\left(67^{\circ}+\theta\right)-\sec \left(23^{\circ}-\theta\right)$ is:
Option 1: $-1$
Option 2: $0$
Option 3: $1$
Option 4: $-2$
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Option 1: $\sqrt{2} \sin \theta$
Option 2: $\sqrt{2} \cos \theta$
Option 3: $\frac{1}{\sqrt{2}} \sin \theta$
Option 4: $\frac{1}{2}\cos \theta$
Question : The value of $\sqrt{\frac{1+\sin A}{1-\sin A}}$ is:
Option 1: $\sec A-\tan A$
Option 2: $\operatorname{cosec} A+\cot A$
Option 3: $\sec A+\tan A$
Option 4: $\operatorname{cosec} A-\cot A$
Question : Find the value of $\left(\tan ^2 \theta+\tan ^4 \theta\right)$.
Option 1: $\cot ^2 \theta-\tan ^2 \theta$
Option 2: $\ {\sec}^4 \theta-\ {\sec}^2 \theta$
Option 3: $\ {\sec}^4 \theta-\ {\sec}^4 \theta$
Option 4: $ \ {\sec}^4 \theta+\ {\sec}^2 \theta$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile