Question : The area of the sector of a circle of radius 12 cm is $32 \pi \;\mathrm{cm}^2$. Find the length of the corresponding arc of the sector.
Option 1: $\frac{16}{3} \pi$ cm
Option 2: $\frac{13}{3} \pi$ cm
Option 3: $\frac{10}{3} \pi$ cm
Option 4: $\frac{8}{3} \pi$ cm
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{16}{3} \pi$ cm
Solution : Given: The radius of the circle is 12 cm. The area of the sector of a circle is $32\pi$ cm2. Area of the sector = $\pi r^2× \frac{\theta}{360^{\circ}}$ ⇒ $32\pi=\pi ×12^2×\frac{\theta}{360^{\circ}}$ ⇒ $\frac{\theta}{360}=\frac{32}{144}$ ⇒ $\frac{\theta}{360}=\frac{2}{9}$ Length of the arc = $2\pi r×\frac{\theta}{360^{\circ}}$ = $2\pi×12×\frac{2}{9}=\frac{16}{3} \pi$ cm So, the length of the arc is $\frac{16}{3} \pi$ cm. Hence, the correct answer is $\frac{16}{3} \pi$ cm.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : The radius of a circle with centre at O is 6 cm and the central angle of a sector is 40°. Find the area of the sector.
Option 1: $6 \pi ~\mathrm{cm}^2$
Option 2: $5 \pi ~\mathrm{cm}^2$
Option 3: $4 \pi ~\mathrm{cm}^2$
Option 4: $8 \pi ~\mathrm{cm}^2$
Question : The area of a sector of a circle of radius 28 cm is 112 cm2. Find the length of the corresponding arc of the sector.
Option 1: 4 cm
Option 2: 8 cm
Option 3: 6 cm
Option 4: 5 cm
Question : The area of a sector of a circle is 88 sq. cm., and the angle of the sector is 45°. Find the radius of the circle. (Use $\pi=\frac{22}{7}$)
Option 1: $3 \sqrt{ 11} \mathrm{~cm}$
Option 2: $4 \sqrt{ 14} \mathrm{~cm}$
Option 3: $6 \sqrt{ 13} \mathrm{~cm}$
Option 4: $5 \sqrt{ 14} \mathrm{~cm}$
Question : Two circles touch each other externally. The radius of the first circle with centre O is 12 cm. Radius of the second circle with centre A is 8 cm. Find the length of their common tangent BC.
Option 1: $6 \sqrt{6} \mathrm{~cm}$
Option 2: $8 \sqrt{3} \mathrm{~cm}$
Option 3: $8 \sqrt{2} \mathrm{~cm}$
Option 4: $8 \sqrt{6} \mathrm{~cm}$
Question : A circular arc whose radius is 4 cm makes an angle of 45º at the centre. Find the perimeter of the sector formed. (Take $\pi=\frac{22}{7}$)
Option 1: $\frac{78}{7} \mathrm{~cm}$
Option 2: $\frac{72}{7} \mathrm{~cm}$
Option 3: $\frac{74}{7} \mathrm{~cm}$
Option 4: $\frac{76}{7} \mathrm{~cm}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile