68 Views

Question : The difference between the semi-perimeter and the sides of ΔPQR are 18 cm, 17 cm, and 25 cm, respectively. Find the area of the triangle.

Option 1: $330\sqrt{510}$ cm2

Option 2: $230\sqrt{510}$ cm2

Option 3: $30\sqrt{510}$ cm2

Option 4: $130\sqrt{510}$ cm2


Team Careers360 23rd Jan, 2024
Answer (1)
Team Careers360 25th Jan, 2024

Correct Answer: $30\sqrt{510}$ cm2


Solution : Let the semi-perimeter be $s$ and the sides of a triangle are $a,b,$ and $c$.
Given,
$s - a = 18$------- (1)
$s - b = 17$--------(2)
$s - c = 25$--------(3)
⇒ $a = s - 18$
⇒ $b = s - 17$
⇒ $c = s - 25$
Now, $s = \frac{a + b+c}{2}$ = $\frac{s−18+s−17+s−25}{2}=\frac{3s−60}{2}= 60$ units
Now with the help of Heron's formula,
Area of Triangle = $\sqrt{s(s-a)(s-b)(s-c)}$
⇒ Area of triangle = $\sqrt{60×18×17×25}$
⇒ Area of triangle = $\sqrt{459000}$
$\therefore$ Area of triangle = $30\sqrt{510}$ cm$^2$
Hence, the correct answer is $30\sqrt{510}$ cm2.

Know More About

Related Questions

Amity Online MBA
Apply
Apply for an Online MBA from Amity Online.
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books