Question : The greatest number among the following $\frac{4}{9},\sqrt{\frac{9}{49}},0.\overline{47},(0.7)^{2}$ is:
Option 1: $\frac{4}{9}$
Option 2: $\sqrt{\frac{9}{49}}$
Option 3: $0.\overline{47}$
Option 4: $(0.7)^{2}$
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $(0.7)^{2}$
Solution : $\frac{4}{9} = 0.44$ $\sqrt{\frac{9}{49}} = \frac{3}{7} = 0.42$ $0.\overline{47} = 0.4747........$ $(0.7)^{2} = 0.49$ So, the largest number among these is $(0.7)^{2}$. Hence, the correct answer is $(0.7)^{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Option 1: $\sqrt 2$
Option 2: $\frac{1}{\sqrt2}$
Option 3: $\sqrt 3- \sqrt 2$
Option 4: $0$
Question : If $\sec A=\frac{9}{4}$, then what is the value of $\cot A$?
Option 1: $\frac{4}{\sqrt{65}}$
Option 2: $\frac{9}{\sqrt{65}}$
Option 3: $\frac{\sqrt{65}}{9}$
Option 4: $\frac{\sqrt{65}}{4}$
Question : The value of $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}$ is:
Option 1: $\sqrt{2}$
Option 2: $\sqrt{3}$
Option 3: $1$
Option 4: $4(\sqrt{3}+\sqrt{2})$
Question : Evaluate $\sqrt{20}+\sqrt{12}+\sqrt[3]{729}-\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{81}:$
Option 3: $0$
Option 4: $2\sqrt{2}$
Question : The value of $x$ in the expression $\tan^{2}\frac{\pi }{4}-\cos^{2}\frac{\pi }{3}=x\sin\frac{\pi }{4}\cos\frac{\pi }{4}\tan\frac{\pi }{3}$ is:
Option 1: $\frac{2}{\sqrt{3}}$
Option 2: $\frac{3\sqrt{3}}{4}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\frac{\sqrt{3}}{2}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile